Cargando…

Small RNA sequencing reveals distinct nuclear microRNAs in pig granulosa cells during ovarian follicle growth

Nuclear small RNAs have emerged as an important subset of non-coding RNA species that are capable of regulating gene expression. A type of small RNA, microRNA (miRNA) have been shown to regulate development of the ovarian follicle via canonical targeting and translational repression. Little has been...

Descripción completa

Detalles Bibliográficos
Autores principales: Toms, Derek, Pan, Bo, Bai, Yinshan, Li, Julang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059229/
https://www.ncbi.nlm.nih.gov/pubmed/33879202
http://dx.doi.org/10.1186/s13048-021-00802-3
Descripción
Sumario:Nuclear small RNAs have emerged as an important subset of non-coding RNA species that are capable of regulating gene expression. A type of small RNA, microRNA (miRNA) have been shown to regulate development of the ovarian follicle via canonical targeting and translational repression. Little has been done to study these molecules at a subcellular level. Using cell fractionation and high throughput sequencing, we surveyed cytoplasmic and nuclear small RNA found in the granulosa cells of the pig ovarian antral preovulatory follicle. Bioinformatics analysis revealed a diverse network of small RNA that differ in their subcellular distribution and implied function. We identified predicted genomic DNA binding sites for nucleus-enriched miRNAs that may potentially be involved in transcriptional regulation. The small nucleolar RNA (snoRNA) SNORA73, known to be involved in steroid synthesis, was also found to be highly enriched in the cytoplasm, suggesting a role for snoRNA species in ovarian function. Taken together, these data provide an important resource to study the small RNAome in ovarian follicles and how they may impact fertility. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13048-021-00802-3.