Cargando…

New stent for transapical mitral valve replacement in acute swine experiment

BACKGROUND: Many patients with mitral regurgitation are denied open-heart surgery due to perceived high risk. Transcatheter mitral valve replacement is a therapeutic alternative for patients at high surgical risk. This study aimed to assess the feasibility of a new self-expanding valved stent for tr...

Descripción completa

Detalles Bibliográficos
Autores principales: Zou, Yu, Teng, Peng, Ma, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059321/
https://www.ncbi.nlm.nih.gov/pubmed/33882974
http://dx.doi.org/10.1186/s13019-021-01483-1
Descripción
Sumario:BACKGROUND: Many patients with mitral regurgitation are denied open-heart surgery due to perceived high risk. Transcatheter mitral valve replacement is a therapeutic alternative for patients at high surgical risk. This study aimed to assess the feasibility of a new self-expanding valved stent for transcatheter mitral valve replacement via apex in an acute animal model. METHODS: Eight porcine experiments were performed in the acute study. A left thoracotomy was performed, and the new self-expanding transcatheter valved stent was deployed under fluoroscopic guidance in the native mitral annulus via apex. Hemodynamic data were recorded before and after implantation. Mitral annulus diameter and valve area were measured using echocardiography. Transvalvular and left ventricular outflow tract pressure gradients were measured using invasive methods. RESULTS: Seven animals underwent successful transapical mitral valve replacement; the implantation was unsuccessful in one animal. The mean procedure time, defined from placement to tightening of the purse-string suture, was 17.14 ± 7.86 min. Hemodynamic data before and after transapical mitral valve replacement showed no difference in statistical analysis. The mean diameter of the self-expanding device after implantation was 2.58 ± 1.04 cm; the mean functional area was 2.70 ± 0.26 cm(2). Trace-to-mild central and paravalvular leaks were detected in 7 valves. The mean pressure gradient across the self-expanding device was 2.00 ± 0.82 mmHg; the corresponding gradient across the LVOT was 3.28 ± 1.11 mmHg. Postmortem evaluation confirmed precise device positioning in 7 animals with no signs of LVOT obstruction. CONCLUSION: Transcatheter mitral replacement of the new valved stent was confirmed feasible in acute preclinical models. The new stent reveals optimal design parameters.