Cargando…
Ageing genetic signature of hypersomatotropism
Acromegaly is a pathological condition that is caused by over-secretion of growth hormone (GH) and develops primarily from a pituitary adenoma. Excess GH exposure over a prolonged period of time leads to a wide range of systemic manifestations and comorbidities. Studying the effect of excess GH on t...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059514/ https://www.ncbi.nlm.nih.gov/pubmed/33849304 http://dx.doi.org/10.1098/rsob.200265 |
_version_ | 1783681203397722112 |
---|---|
author | Elbialy, Abdalla |
author_facet | Elbialy, Abdalla |
author_sort | Elbialy, Abdalla |
collection | PubMed |
description | Acromegaly is a pathological condition that is caused by over-secretion of growth hormone (GH) and develops primarily from a pituitary adenoma. Excess GH exposure over a prolonged period of time leads to a wide range of systemic manifestations and comorbidities. Studying the effect of excess GH on the cellular level could help to understand the underlying causes of acromegaly health complications and comorbidities. In our previous publications, we have shown that excess GH reduces body side population (SP) stem cells and induces signs of premature ageing in an acromegaly zebrafish model. Here, we study acromegaly ageing in greater depth at the level of gene expression. We investigated whether acromegaly induces an ageing genetic signature in different organs. Using the GenAge database, our acromegaly model showed a significant enrichment of ageing genetic datasets in the muscle but not in other organs. Likewise, the hierarchical clustering of wild type (WT), acromegaly and aged RNA data from various organs revealed the similarity of gene expression profiles between the acromegaly and the aged muscles. We therefore identified overlapping differentially expressed genes (DEGs) in different organs between acromegaly and aged zebrafish. Importantly, about half of the muscle, liver and brain acromegaly DEGs overlapped with aged zebrafish DEGs. Interestingly, overlapping was observed in the same way; acromegaly-up DEGs overlapped with aged zebrafish up DEGs, not down DEGs, and vice versa. We then identified the biological functions of overlapping DEGs. Enrichment database analysis and gene ontology showed that most overlapping muscle genes were involved in ageing metabolism, while overlapping liver DEGs were involved in metabolic pathways, response to hypoxia and endoplasmic reticulum stress. Thus, this study provides a full ageing genetic signature of acromegaly at the gene expression level. |
format | Online Article Text |
id | pubmed-8059514 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-80595142021-05-05 Ageing genetic signature of hypersomatotropism Elbialy, Abdalla Open Biol Research Acromegaly is a pathological condition that is caused by over-secretion of growth hormone (GH) and develops primarily from a pituitary adenoma. Excess GH exposure over a prolonged period of time leads to a wide range of systemic manifestations and comorbidities. Studying the effect of excess GH on the cellular level could help to understand the underlying causes of acromegaly health complications and comorbidities. In our previous publications, we have shown that excess GH reduces body side population (SP) stem cells and induces signs of premature ageing in an acromegaly zebrafish model. Here, we study acromegaly ageing in greater depth at the level of gene expression. We investigated whether acromegaly induces an ageing genetic signature in different organs. Using the GenAge database, our acromegaly model showed a significant enrichment of ageing genetic datasets in the muscle but not in other organs. Likewise, the hierarchical clustering of wild type (WT), acromegaly and aged RNA data from various organs revealed the similarity of gene expression profiles between the acromegaly and the aged muscles. We therefore identified overlapping differentially expressed genes (DEGs) in different organs between acromegaly and aged zebrafish. Importantly, about half of the muscle, liver and brain acromegaly DEGs overlapped with aged zebrafish DEGs. Interestingly, overlapping was observed in the same way; acromegaly-up DEGs overlapped with aged zebrafish up DEGs, not down DEGs, and vice versa. We then identified the biological functions of overlapping DEGs. Enrichment database analysis and gene ontology showed that most overlapping muscle genes were involved in ageing metabolism, while overlapping liver DEGs were involved in metabolic pathways, response to hypoxia and endoplasmic reticulum stress. Thus, this study provides a full ageing genetic signature of acromegaly at the gene expression level. The Royal Society 2021-04-14 /pmc/articles/PMC8059514/ /pubmed/33849304 http://dx.doi.org/10.1098/rsob.200265 Text en © 2021 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Research Elbialy, Abdalla Ageing genetic signature of hypersomatotropism |
title | Ageing genetic signature of hypersomatotropism |
title_full | Ageing genetic signature of hypersomatotropism |
title_fullStr | Ageing genetic signature of hypersomatotropism |
title_full_unstemmed | Ageing genetic signature of hypersomatotropism |
title_short | Ageing genetic signature of hypersomatotropism |
title_sort | ageing genetic signature of hypersomatotropism |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059514/ https://www.ncbi.nlm.nih.gov/pubmed/33849304 http://dx.doi.org/10.1098/rsob.200265 |
work_keys_str_mv | AT elbialyabdalla ageinggeneticsignatureofhypersomatotropism |