Cargando…

Uncertainty quantification in classical molecular dynamics

Molecular dynamics simulation is now a widespread approach for understanding complex systems on the atomistic scale. It finds applications from physics and chemistry to engineering, life and medical science. In the last decade, the approach has begun to advance from being a computer-based means of r...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Shunzhou, Sinclair, Robert C., Coveney, Peter V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059622/
https://www.ncbi.nlm.nih.gov/pubmed/33775140
http://dx.doi.org/10.1098/rsta.2020.0082
_version_ 1783681216668499968
author Wan, Shunzhou
Sinclair, Robert C.
Coveney, Peter V.
author_facet Wan, Shunzhou
Sinclair, Robert C.
Coveney, Peter V.
author_sort Wan, Shunzhou
collection PubMed
description Molecular dynamics simulation is now a widespread approach for understanding complex systems on the atomistic scale. It finds applications from physics and chemistry to engineering, life and medical science. In the last decade, the approach has begun to advance from being a computer-based means of rationalizing experimental observations to producing apparently credible predictions for a number of real-world applications within industrial sectors such as advanced materials and drug discovery. However, key aspects concerning the reproducibility of the method have not kept pace with the speed of its uptake in the scientific community. Here, we present a discussion of uncertainty quantification for molecular dynamics simulation designed to endow the method with better error estimates that will enable it to be used to report actionable results. The approach adopted is a standard one in the field of uncertainty quantification, namely using ensemble methods, in which a sufficiently large number of replicas are run concurrently, from which reliable statistics can be extracted. Indeed, because molecular dynamics is intrinsically chaotic, the need to use ensemble methods is fundamental and holds regardless of the duration of the simulations performed. We discuss the approach and illustrate it in a range of applications from materials science to ligand–protein binding free energy estimation. This article is part of the theme issue ‘Reliability and reproducibility in computational science: implementing verification, validation and uncertainty quantification in silico’.
format Online
Article
Text
id pubmed-8059622
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society Publishing
record_format MEDLINE/PubMed
spelling pubmed-80596222022-02-02 Uncertainty quantification in classical molecular dynamics Wan, Shunzhou Sinclair, Robert C. Coveney, Peter V. Philos Trans A Math Phys Eng Sci Articles Molecular dynamics simulation is now a widespread approach for understanding complex systems on the atomistic scale. It finds applications from physics and chemistry to engineering, life and medical science. In the last decade, the approach has begun to advance from being a computer-based means of rationalizing experimental observations to producing apparently credible predictions for a number of real-world applications within industrial sectors such as advanced materials and drug discovery. However, key aspects concerning the reproducibility of the method have not kept pace with the speed of its uptake in the scientific community. Here, we present a discussion of uncertainty quantification for molecular dynamics simulation designed to endow the method with better error estimates that will enable it to be used to report actionable results. The approach adopted is a standard one in the field of uncertainty quantification, namely using ensemble methods, in which a sufficiently large number of replicas are run concurrently, from which reliable statistics can be extracted. Indeed, because molecular dynamics is intrinsically chaotic, the need to use ensemble methods is fundamental and holds regardless of the duration of the simulations performed. We discuss the approach and illustrate it in a range of applications from materials science to ligand–protein binding free energy estimation. This article is part of the theme issue ‘Reliability and reproducibility in computational science: implementing verification, validation and uncertainty quantification in silico’. The Royal Society Publishing 2021-05-17 2021-03-29 /pmc/articles/PMC8059622/ /pubmed/33775140 http://dx.doi.org/10.1098/rsta.2020.0082 Text en © 2021 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited.
spellingShingle Articles
Wan, Shunzhou
Sinclair, Robert C.
Coveney, Peter V.
Uncertainty quantification in classical molecular dynamics
title Uncertainty quantification in classical molecular dynamics
title_full Uncertainty quantification in classical molecular dynamics
title_fullStr Uncertainty quantification in classical molecular dynamics
title_full_unstemmed Uncertainty quantification in classical molecular dynamics
title_short Uncertainty quantification in classical molecular dynamics
title_sort uncertainty quantification in classical molecular dynamics
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059622/
https://www.ncbi.nlm.nih.gov/pubmed/33775140
http://dx.doi.org/10.1098/rsta.2020.0082
work_keys_str_mv AT wanshunzhou uncertaintyquantificationinclassicalmoleculardynamics
AT sinclairrobertc uncertaintyquantificationinclassicalmoleculardynamics
AT coveneypeterv uncertaintyquantificationinclassicalmoleculardynamics