Cargando…

Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients

BACKGROUND: Efficient and early triage of hospitalized Covid-19 patients to detect those with higher risk of severe disease is essential for appropriate case management. METHODS: We trained, validated, and externally tested a machine-learning model to early identify patients who will die or require...

Descripción completa

Detalles Bibliográficos
Autores principales: Marcos, Miguel, Belhassen-García, Moncef, Sánchez-Puente, Antonio, Sampedro-Gomez, Jesús, Azibeiro, Raúl, Dorado-Díaz, Pedro-Ignacio, Marcano-Millán, Edgar, García-Vidal, Carolina, Moreiro-Barroso, María-Teresa, Cubino-Bóveda, Noelia, Pérez-García, María-Luisa, Rodríguez-Alonso, Beatriz, Encinas-Sánchez, Daniel, Peña-Balbuena, Sonia, Sobejano-Fuertes, Eduardo, Inés, Sandra, Carbonell, Cristina, López-Parra, Miriam, Andrade-Meira, Fernanda, López-Bernús, Amparo, Lorenzo, Catalina, Carpio, Adela, Polo-San-Ricardo, David, Sánchez-Hernández, Miguel-Vicente, Borrás, Rafael, Sagredo-Meneses, Víctor, Sanchez, Pedro-Luis, Soriano, Alex, Martín-Oterino, José-Ángel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059804/
https://www.ncbi.nlm.nih.gov/pubmed/33882060
http://dx.doi.org/10.1371/journal.pone.0240200
_version_ 1783681247005900800
author Marcos, Miguel
Belhassen-García, Moncef
Sánchez-Puente, Antonio
Sampedro-Gomez, Jesús
Azibeiro, Raúl
Dorado-Díaz, Pedro-Ignacio
Marcano-Millán, Edgar
García-Vidal, Carolina
Moreiro-Barroso, María-Teresa
Cubino-Bóveda, Noelia
Pérez-García, María-Luisa
Rodríguez-Alonso, Beatriz
Encinas-Sánchez, Daniel
Peña-Balbuena, Sonia
Sobejano-Fuertes, Eduardo
Inés, Sandra
Carbonell, Cristina
López-Parra, Miriam
Andrade-Meira, Fernanda
López-Bernús, Amparo
Lorenzo, Catalina
Carpio, Adela
Polo-San-Ricardo, David
Sánchez-Hernández, Miguel-Vicente
Borrás, Rafael
Sagredo-Meneses, Víctor
Sanchez, Pedro-Luis
Soriano, Alex
Martín-Oterino, José-Ángel
author_facet Marcos, Miguel
Belhassen-García, Moncef
Sánchez-Puente, Antonio
Sampedro-Gomez, Jesús
Azibeiro, Raúl
Dorado-Díaz, Pedro-Ignacio
Marcano-Millán, Edgar
García-Vidal, Carolina
Moreiro-Barroso, María-Teresa
Cubino-Bóveda, Noelia
Pérez-García, María-Luisa
Rodríguez-Alonso, Beatriz
Encinas-Sánchez, Daniel
Peña-Balbuena, Sonia
Sobejano-Fuertes, Eduardo
Inés, Sandra
Carbonell, Cristina
López-Parra, Miriam
Andrade-Meira, Fernanda
López-Bernús, Amparo
Lorenzo, Catalina
Carpio, Adela
Polo-San-Ricardo, David
Sánchez-Hernández, Miguel-Vicente
Borrás, Rafael
Sagredo-Meneses, Víctor
Sanchez, Pedro-Luis
Soriano, Alex
Martín-Oterino, José-Ángel
author_sort Marcos, Miguel
collection PubMed
description BACKGROUND: Efficient and early triage of hospitalized Covid-19 patients to detect those with higher risk of severe disease is essential for appropriate case management. METHODS: We trained, validated, and externally tested a machine-learning model to early identify patients who will die or require mechanical ventilation during hospitalization from clinical and laboratory features obtained at admission. A development cohort with 918 Covid-19 patients was used for training and internal validation, and 352 patients from another hospital were used for external testing. Performance of the model was evaluated by calculating the area under the receiver-operating-characteristic curve (AUC), sensitivity and specificity. RESULTS: A total of 363 of 918 (39.5%) and 128 of 352 (36.4%) Covid-19 patients from the development and external testing cohort, respectively, required mechanical ventilation or died during hospitalization. In the development cohort, the model obtained an AUC of 0.85 (95% confidence interval [CI], 0.82 to 0.87) for predicting severity of disease progression. Variables ranked according to their contribution to the model were the peripheral blood oxygen saturation (SpO2)/fraction of inspired oxygen (FiO2) ratio, age, estimated glomerular filtration rate, procalcitonin, C-reactive protein, updated Charlson comorbidity index and lymphocytes. In the external testing cohort, the model performed an AUC of 0.83 (95% CI, 0.81 to 0.85). This model is deployed in an open source calculator, in which Covid-19 patients at admission are individually stratified as being at high or non-high risk for severe disease progression. CONCLUSIONS: This machine-learning model, applied at hospital admission, predicts risk of severe disease progression in Covid-19 patients.
format Online
Article
Text
id pubmed-8059804
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-80598042021-05-04 Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients Marcos, Miguel Belhassen-García, Moncef Sánchez-Puente, Antonio Sampedro-Gomez, Jesús Azibeiro, Raúl Dorado-Díaz, Pedro-Ignacio Marcano-Millán, Edgar García-Vidal, Carolina Moreiro-Barroso, María-Teresa Cubino-Bóveda, Noelia Pérez-García, María-Luisa Rodríguez-Alonso, Beatriz Encinas-Sánchez, Daniel Peña-Balbuena, Sonia Sobejano-Fuertes, Eduardo Inés, Sandra Carbonell, Cristina López-Parra, Miriam Andrade-Meira, Fernanda López-Bernús, Amparo Lorenzo, Catalina Carpio, Adela Polo-San-Ricardo, David Sánchez-Hernández, Miguel-Vicente Borrás, Rafael Sagredo-Meneses, Víctor Sanchez, Pedro-Luis Soriano, Alex Martín-Oterino, José-Ángel PLoS One Research Article BACKGROUND: Efficient and early triage of hospitalized Covid-19 patients to detect those with higher risk of severe disease is essential for appropriate case management. METHODS: We trained, validated, and externally tested a machine-learning model to early identify patients who will die or require mechanical ventilation during hospitalization from clinical and laboratory features obtained at admission. A development cohort with 918 Covid-19 patients was used for training and internal validation, and 352 patients from another hospital were used for external testing. Performance of the model was evaluated by calculating the area under the receiver-operating-characteristic curve (AUC), sensitivity and specificity. RESULTS: A total of 363 of 918 (39.5%) and 128 of 352 (36.4%) Covid-19 patients from the development and external testing cohort, respectively, required mechanical ventilation or died during hospitalization. In the development cohort, the model obtained an AUC of 0.85 (95% confidence interval [CI], 0.82 to 0.87) for predicting severity of disease progression. Variables ranked according to their contribution to the model were the peripheral blood oxygen saturation (SpO2)/fraction of inspired oxygen (FiO2) ratio, age, estimated glomerular filtration rate, procalcitonin, C-reactive protein, updated Charlson comorbidity index and lymphocytes. In the external testing cohort, the model performed an AUC of 0.83 (95% CI, 0.81 to 0.85). This model is deployed in an open source calculator, in which Covid-19 patients at admission are individually stratified as being at high or non-high risk for severe disease progression. CONCLUSIONS: This machine-learning model, applied at hospital admission, predicts risk of severe disease progression in Covid-19 patients. Public Library of Science 2021-04-21 /pmc/articles/PMC8059804/ /pubmed/33882060 http://dx.doi.org/10.1371/journal.pone.0240200 Text en © 2021 Marcos et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Marcos, Miguel
Belhassen-García, Moncef
Sánchez-Puente, Antonio
Sampedro-Gomez, Jesús
Azibeiro, Raúl
Dorado-Díaz, Pedro-Ignacio
Marcano-Millán, Edgar
García-Vidal, Carolina
Moreiro-Barroso, María-Teresa
Cubino-Bóveda, Noelia
Pérez-García, María-Luisa
Rodríguez-Alonso, Beatriz
Encinas-Sánchez, Daniel
Peña-Balbuena, Sonia
Sobejano-Fuertes, Eduardo
Inés, Sandra
Carbonell, Cristina
López-Parra, Miriam
Andrade-Meira, Fernanda
López-Bernús, Amparo
Lorenzo, Catalina
Carpio, Adela
Polo-San-Ricardo, David
Sánchez-Hernández, Miguel-Vicente
Borrás, Rafael
Sagredo-Meneses, Víctor
Sanchez, Pedro-Luis
Soriano, Alex
Martín-Oterino, José-Ángel
Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients
title Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients
title_full Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients
title_fullStr Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients
title_full_unstemmed Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients
title_short Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients
title_sort development of a severity of disease score and classification model by machine learning for hospitalized covid-19 patients
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059804/
https://www.ncbi.nlm.nih.gov/pubmed/33882060
http://dx.doi.org/10.1371/journal.pone.0240200
work_keys_str_mv AT marcosmiguel developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT belhassengarciamoncef developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT sanchezpuenteantonio developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT sampedrogomezjesus developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT azibeiroraul developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT doradodiazpedroignacio developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT marcanomillanedgar developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT garciavidalcarolina developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT moreirobarrosomariateresa developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT cubinobovedanoelia developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT perezgarciamarialuisa developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT rodriguezalonsobeatriz developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT encinassanchezdaniel developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT penabalbuenasonia developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT sobejanofuerteseduardo developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT inessandra developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT carbonellcristina developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT lopezparramiriam developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT andrademeirafernanda developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT lopezbernusamparo developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT lorenzocatalina developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT carpioadela developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT polosanricardodavid developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT sanchezhernandezmiguelvicente developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT borrasrafael developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT sagredomenesesvictor developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT sanchezpedroluis developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT sorianoalex developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients
AT martinoterinojoseangel developmentofaseverityofdiseasescoreandclassificationmodelbymachinelearningforhospitalizedcovid19patients