Cargando…
Qiangji Jianli Decoction Alleviates Hydrogen Peroxide-Induced Mitochondrial Dysfunction via Regulating Mitochondrial Dynamics and Biogenesis in L6 Myoblasts
Oxidative stress can cause the excessive generation of reactive oxygen species (ROS) and has various adverse effects on muscular mitochondria. Qiangji Jianli decoction (QJJLD) is an effective traditional Chinese medicine (TCM) that is widely applied to improve muscle weakness, and it has active cons...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8060107/ https://www.ncbi.nlm.nih.gov/pubmed/33936383 http://dx.doi.org/10.1155/2021/6660616 |
_version_ | 1783681295705964544 |
---|---|
author | Song, Jingwei Li, Qing Ke, Lingling Liang, Jian Jiao, Wei Pan, Huafeng Li, Yanwu Du, Qun Song, Yafang Ji, Aidong Chen, Zhiwei Li, Jinqiu Li, Lanqi |
author_facet | Song, Jingwei Li, Qing Ke, Lingling Liang, Jian Jiao, Wei Pan, Huafeng Li, Yanwu Du, Qun Song, Yafang Ji, Aidong Chen, Zhiwei Li, Jinqiu Li, Lanqi |
author_sort | Song, Jingwei |
collection | PubMed |
description | Oxidative stress can cause the excessive generation of reactive oxygen species (ROS) and has various adverse effects on muscular mitochondria. Qiangji Jianli decoction (QJJLD) is an effective traditional Chinese medicine (TCM) that is widely applied to improve muscle weakness, and it has active constituents that prevent mitochondrial dysfunction. To investigate the protective mechanism of QJJLD against hydrogen peroxide- (H(2)O(2)-) mediated mitochondrial dysfunction in L6 myoblasts. Cell viability was determined with MTT assay. Mitochondrial ultrastructure was detected by transmission electron microscope (TEM). ROS and mitochondrial membrane potential (MMP) were analyzed by fluorescence microscope and flow cytometry. The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activity, and malondialdehyde (MDA) level were determined by WST-1, TBA, and DTNB methods, respectively. The mRNA and protein levels were measured by quantitative real-time PCR (qRT-PCR) and Western blot. The cell viability was decreased, and the cellular ROS level was increased when L6 myoblasts were exposed to H(2)O(2). After treatment with QJJLD-containing serum, the SOD and GSH-Px activities were increased. MDA level was decreased concurrently. ROS level was decreased while respiratory chain complex activity and ATP content were increased in L6 myoblasts. MMP loss was attenuated. Mitochondrial ultrastructure was also improved. Simultaneously, the protein expressions of p-AMPK, PGC-1α, NRF1, and TFAM were upregulated. The mRNA and protein expressions of Mfn1/2 and Opa1 were also upregulated while Drp1 and Fis1 were downregulated. These results suggest that QJJLD may alleviate mitochondrial dysfunction through the regulation of mitochondrial dynamics and biogenesis, the inhibition of ROS generation, and the promotion of mitochondrial energy metabolism. |
format | Online Article Text |
id | pubmed-8060107 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-80601072021-04-29 Qiangji Jianli Decoction Alleviates Hydrogen Peroxide-Induced Mitochondrial Dysfunction via Regulating Mitochondrial Dynamics and Biogenesis in L6 Myoblasts Song, Jingwei Li, Qing Ke, Lingling Liang, Jian Jiao, Wei Pan, Huafeng Li, Yanwu Du, Qun Song, Yafang Ji, Aidong Chen, Zhiwei Li, Jinqiu Li, Lanqi Oxid Med Cell Longev Research Article Oxidative stress can cause the excessive generation of reactive oxygen species (ROS) and has various adverse effects on muscular mitochondria. Qiangji Jianli decoction (QJJLD) is an effective traditional Chinese medicine (TCM) that is widely applied to improve muscle weakness, and it has active constituents that prevent mitochondrial dysfunction. To investigate the protective mechanism of QJJLD against hydrogen peroxide- (H(2)O(2)-) mediated mitochondrial dysfunction in L6 myoblasts. Cell viability was determined with MTT assay. Mitochondrial ultrastructure was detected by transmission electron microscope (TEM). ROS and mitochondrial membrane potential (MMP) were analyzed by fluorescence microscope and flow cytometry. The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activity, and malondialdehyde (MDA) level were determined by WST-1, TBA, and DTNB methods, respectively. The mRNA and protein levels were measured by quantitative real-time PCR (qRT-PCR) and Western blot. The cell viability was decreased, and the cellular ROS level was increased when L6 myoblasts were exposed to H(2)O(2). After treatment with QJJLD-containing serum, the SOD and GSH-Px activities were increased. MDA level was decreased concurrently. ROS level was decreased while respiratory chain complex activity and ATP content were increased in L6 myoblasts. MMP loss was attenuated. Mitochondrial ultrastructure was also improved. Simultaneously, the protein expressions of p-AMPK, PGC-1α, NRF1, and TFAM were upregulated. The mRNA and protein expressions of Mfn1/2 and Opa1 were also upregulated while Drp1 and Fis1 were downregulated. These results suggest that QJJLD may alleviate mitochondrial dysfunction through the regulation of mitochondrial dynamics and biogenesis, the inhibition of ROS generation, and the promotion of mitochondrial energy metabolism. Hindawi 2021-04-13 /pmc/articles/PMC8060107/ /pubmed/33936383 http://dx.doi.org/10.1155/2021/6660616 Text en Copyright © 2021 Jingwei Song et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Song, Jingwei Li, Qing Ke, Lingling Liang, Jian Jiao, Wei Pan, Huafeng Li, Yanwu Du, Qun Song, Yafang Ji, Aidong Chen, Zhiwei Li, Jinqiu Li, Lanqi Qiangji Jianli Decoction Alleviates Hydrogen Peroxide-Induced Mitochondrial Dysfunction via Regulating Mitochondrial Dynamics and Biogenesis in L6 Myoblasts |
title | Qiangji Jianli Decoction Alleviates Hydrogen Peroxide-Induced Mitochondrial Dysfunction via Regulating Mitochondrial Dynamics and Biogenesis in L6 Myoblasts |
title_full | Qiangji Jianli Decoction Alleviates Hydrogen Peroxide-Induced Mitochondrial Dysfunction via Regulating Mitochondrial Dynamics and Biogenesis in L6 Myoblasts |
title_fullStr | Qiangji Jianli Decoction Alleviates Hydrogen Peroxide-Induced Mitochondrial Dysfunction via Regulating Mitochondrial Dynamics and Biogenesis in L6 Myoblasts |
title_full_unstemmed | Qiangji Jianli Decoction Alleviates Hydrogen Peroxide-Induced Mitochondrial Dysfunction via Regulating Mitochondrial Dynamics and Biogenesis in L6 Myoblasts |
title_short | Qiangji Jianli Decoction Alleviates Hydrogen Peroxide-Induced Mitochondrial Dysfunction via Regulating Mitochondrial Dynamics and Biogenesis in L6 Myoblasts |
title_sort | qiangji jianli decoction alleviates hydrogen peroxide-induced mitochondrial dysfunction via regulating mitochondrial dynamics and biogenesis in l6 myoblasts |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8060107/ https://www.ncbi.nlm.nih.gov/pubmed/33936383 http://dx.doi.org/10.1155/2021/6660616 |
work_keys_str_mv | AT songjingwei qiangjijianlidecoctionalleviateshydrogenperoxideinducedmitochondrialdysfunctionviaregulatingmitochondrialdynamicsandbiogenesisinl6myoblasts AT liqing qiangjijianlidecoctionalleviateshydrogenperoxideinducedmitochondrialdysfunctionviaregulatingmitochondrialdynamicsandbiogenesisinl6myoblasts AT kelingling qiangjijianlidecoctionalleviateshydrogenperoxideinducedmitochondrialdysfunctionviaregulatingmitochondrialdynamicsandbiogenesisinl6myoblasts AT liangjian qiangjijianlidecoctionalleviateshydrogenperoxideinducedmitochondrialdysfunctionviaregulatingmitochondrialdynamicsandbiogenesisinl6myoblasts AT jiaowei qiangjijianlidecoctionalleviateshydrogenperoxideinducedmitochondrialdysfunctionviaregulatingmitochondrialdynamicsandbiogenesisinl6myoblasts AT panhuafeng qiangjijianlidecoctionalleviateshydrogenperoxideinducedmitochondrialdysfunctionviaregulatingmitochondrialdynamicsandbiogenesisinl6myoblasts AT liyanwu qiangjijianlidecoctionalleviateshydrogenperoxideinducedmitochondrialdysfunctionviaregulatingmitochondrialdynamicsandbiogenesisinl6myoblasts AT duqun qiangjijianlidecoctionalleviateshydrogenperoxideinducedmitochondrialdysfunctionviaregulatingmitochondrialdynamicsandbiogenesisinl6myoblasts AT songyafang qiangjijianlidecoctionalleviateshydrogenperoxideinducedmitochondrialdysfunctionviaregulatingmitochondrialdynamicsandbiogenesisinl6myoblasts AT jiaidong qiangjijianlidecoctionalleviateshydrogenperoxideinducedmitochondrialdysfunctionviaregulatingmitochondrialdynamicsandbiogenesisinl6myoblasts AT chenzhiwei qiangjijianlidecoctionalleviateshydrogenperoxideinducedmitochondrialdysfunctionviaregulatingmitochondrialdynamicsandbiogenesisinl6myoblasts AT lijinqiu qiangjijianlidecoctionalleviateshydrogenperoxideinducedmitochondrialdysfunctionviaregulatingmitochondrialdynamicsandbiogenesisinl6myoblasts AT lilanqi qiangjijianlidecoctionalleviateshydrogenperoxideinducedmitochondrialdysfunctionviaregulatingmitochondrialdynamicsandbiogenesisinl6myoblasts |