Cargando…
A cyclic learning approach for improving pre-stack seismic processing
Current seismic processing workflows in the oil and gas industry involve several interactions between different experts to optimize the overall data quality in various tasks, such as noise attenuation, velocity analysis and horizon picking. While many machine learning-based approaches have been prop...
Autores principales: | Borges Oliveira, Dario Augusto, Szwarcman, Daniela, da Silva Ferreira, Rodrigo, Zaytsev, Semen, Semin, Daniil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8060324/ https://www.ncbi.nlm.nih.gov/pubmed/33883586 http://dx.doi.org/10.1038/s41598-021-87794-8 |
Ejemplares similares
-
Stochastic reservoir characterization using pre-stack seismic data
por: Eidsvik, J, et al.
Publicado: (2001) -
Using fish lateral line sensing to improve seismic acquisition and processing
por: de Freitas Silva, Franscisco Wilton, et al.
Publicado: (2019) -
Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field
por: Holtzman, Benjamin K., et al.
Publicado: (2018) -
Aspects of seismic reflection data processing
por: Marschall, R
Publicado: (1990) -
Seismic applications of homomorphic signal processing
por: Tribolet, José Manuel
Publicado: (1979)