Cargando…
RANDGAN: Randomized generative adversarial network for detection of COVID-19 in chest X-ray
COVID-19 spread across the globe at an immense rate and has left healthcare systems incapacitated to diagnose and test patients at the needed rate. Studies have shown promising results for detection of COVID-19 from viral bacterial pneumonia in chest X-rays. Automation of COVID-19 testing using medi...
Autores principales: | Motamed, Saman, Rogalla, Patrik, Khalvati, Farzad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8060427/ https://www.ncbi.nlm.nih.gov/pubmed/33883609 http://dx.doi.org/10.1038/s41598-021-87994-2 |
Ejemplares similares
-
Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images
por: Motamed, Saman, et al.
Publicado: (2021) -
Vulnerability of deep neural networks for detecting COVID-19 cases from chest X-ray images to universal adversarial attacks
por: Hirano, Hokuto, et al.
Publicado: (2020) -
Unsupervised Learning with Generative Adversarial Network for Automatic Tire Defect Detection from X-ray Images
por: Wang, Yilin, et al.
Publicado: (2021) -
COVID-19 detection and heatmap generation in chest x-ray images
por: Kusakunniran, Worapan, et al.
Publicado: (2021) -
MTSS-AAE: Multi-task semi-supervised adversarial autoencoding for COVID-19 detection based on chest X-ray images
por: Ullah, Zahid, et al.
Publicado: (2023)