Cargando…
In situ Parallel Training of Analog Neural Network Using Electrochemical Random-Access Memory
In-memory computing based on non-volatile resistive memory can significantly improve the energy efficiency of artificial neural networks. However, accurate in situ training has been challenging due to the nonlinear and stochastic switching of the resistive memory elements. One promising analog memor...
Autores principales: | Li, Yiyang, Xiao, T. Patrick, Bennett, Christopher H., Isele, Erik, Melianas, Armantas, Tao, Hanbo, Marinella, Matthew J., Salleo, Alberto, Fuller, Elliot J., Talin, A. Alec |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8060477/ https://www.ncbi.nlm.nih.gov/pubmed/33897351 http://dx.doi.org/10.3389/fnins.2021.636127 |
Ejemplares similares
-
Efficient
Electronic Tunneling Governs Transport in
Conducting Polymer-Insulator Blends
por: Keene, Scott T., et al.
Publicado: (2022) -
Photo-generated carriers lose energy during extraction from polymer-fullerene solar cells
por: Melianas, Armantas, et al.
Publicado: (2015) -
Organic neuromorphic electronics for sensorimotor integration and learning in robotics
por: Krauhausen, Imke, et al.
Publicado: (2021) -
Open-loop analog programmable electrochemical memory array
por: Chen, Peng, et al.
Publicado: (2023) -
Parallel wave-based analog computing using metagratings
por: Rajabalipanah, Hamid, et al.
Publicado: (2022)