Cargando…
Machine learning prediction of methionine and tryptophan photooxidation susceptibility
Photooxidation of methionine (Met) and tryptophan (Trp) residues is common and includes major degradation pathways that often pose a serious threat to the success of therapeutic proteins. Oxidation impacts all steps of protein production, manufacturing, and shelf life. Prediction of oxidation liabil...
Autores principales: | Delmar, Jared A., Buehler, Eugen, Chetty, Ashwin K., Das, Agastya, Quesada, Guillermo Miro, Wang, Jihong, Chen, Xiaoyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8060516/ https://www.ncbi.nlm.nih.gov/pubmed/33898635 http://dx.doi.org/10.1016/j.omtm.2021.03.023 |
Ejemplares similares
-
Recovering the susceptibility of antibiotic-resistant bacteria using photooxidative damage
por: Soares, Jennifer M., et al.
Publicado: (2023) -
PHOTOOXIDATIONS IN PIGMENTED BLEPHARISMA
por: Giese, Arthur C., et al.
Publicado: (1949) -
Machine Learning Enables Accurate Prediction of Asparagine Deamidation Probability and Rate
por: Delmar, Jared A., et al.
Publicado: (2020) -
Machine Learning Enables Accurate Prediction of Asparagine Deamidation Probability and Rate
por: Delmar, Jared A., et al.
Publicado: (2019) -
Photooxidation of n-Hexanal in Air
por: Tadić, Jovan, et al.
Publicado: (2001)