Cargando…
ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data
Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder which is characterized by impaired communication, and limited social interactions. The shortcomings of current clinical approaches which are based exclusively on behavioral observation of symptomology, and poor understandin...
Autores principales: | Almuqhim, Fahad, Saeed, Fahad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8060560/ https://www.ncbi.nlm.nih.gov/pubmed/33897398 http://dx.doi.org/10.3389/fncom.2021.654315 |
Ejemplares similares
-
ASD-DiagNet: A Hybrid Learning Approach for Detection of Autism Spectrum Disorder Using fMRI Data
por: Eslami, Taban, et al.
Publicado: (2019) -
Detection of ASD Children through Deep-Learning Application of fMRI
por: Feng, Min, et al.
Publicado: (2023) -
The autism spectrum disorders (ASD)
por: Gambino, G
Publicado: (2014) -
DSM-5 and autism spectrum disorders (ASDs): an opportunity for identifying ASD subtypes
por: Grzadzinski, Rebecca, et al.
Publicado: (2013) -
Perceptions of Autism Spectrum Disorder (ASD) Etiology among Parents of Children with ASD
por: Chen, Wei-Ju, et al.
Publicado: (2021)