Cargando…
Closed-Form Results for Prior Constraints in Sum-Product Networks
Incorporating constraints is a major concern in probabilistic machine learning. A wide variety of problems require predictions to be integrated with reasoning about constraints, from modeling routes on maps to approving loan predictions. In the former, we may require the prediction model to respect...
Autores principales: | Papantonis, Ioannis, Belle, Vaishak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8060637/ https://www.ncbi.nlm.nih.gov/pubmed/33898984 http://dx.doi.org/10.3389/frai.2021.644062 |
Ejemplares similares
-
Intention Recognition With ProbLog
por: Smith, Gary B., et al.
Publicado: (2022) -
Signal Perceptron: On the Identifiability of Boolean Function Spaces and Beyond
por: Mendez Lucero, Miguel-Angel, et al.
Publicado: (2022) -
Logic + probabilistic programming + causal laws
por: Belle, Vaishak
Publicado: (2023) -
Graph Neural Networks for Maximum Constraint Satisfaction
por: Tönshoff, Jan, et al.
Publicado: (2021) -
Spatial position constraint for unsupervised learning of speech representations
por: Humayun, Mohammad Ali, et al.
Publicado: (2021)