Cargando…

Influence of Rootstock Genotype and Ploidy Level on Common Clementine (Citrus clementina Hort. ex Tan) Tolerance to Nutrient Deficiency

Nutrient deficiency, in particular when this involves a major macronutrient (N, P, and K), is a limiting factor on the performance of plants in their natural habitat and agricultural environment. In the citrus industry, one of the eco-friendliest techniques for improving tolerance to biotic and abio...

Descripción completa

Detalles Bibliográficos
Autores principales: Oustric, Julie, Herbette, Stéphane, Morillon, Raphaël, Giannettini, Jean, Berti, Liliane, Santini, Jérémie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8060649/
https://www.ncbi.nlm.nih.gov/pubmed/33897725
http://dx.doi.org/10.3389/fpls.2021.634237
_version_ 1783681406930518016
author Oustric, Julie
Herbette, Stéphane
Morillon, Raphaël
Giannettini, Jean
Berti, Liliane
Santini, Jérémie
author_facet Oustric, Julie
Herbette, Stéphane
Morillon, Raphaël
Giannettini, Jean
Berti, Liliane
Santini, Jérémie
author_sort Oustric, Julie
collection PubMed
description Nutrient deficiency, in particular when this involves a major macronutrient (N, P, and K), is a limiting factor on the performance of plants in their natural habitat and agricultural environment. In the citrus industry, one of the eco-friendliest techniques for improving tolerance to biotic and abiotic stress is based on the grafting of a rootstock and a scion of economic interest. Scion tolerance may be improved by a tetraploid rootstock. The purpose of this study was to highlight if tolerance of a common clementine scion (C) (Citrus clementina Hort. ex Tan) to nutrient deficiency could be improved by several diploid (2×) and their tetraploid (4×) counterparts citrus genotypes commonly used as rootstocks: Trifoliate orange × Cleopatra mandarin (C/PMC2x and C/PMC4x), Carrizo citrange (C/CC2x and C/CC4x), Citrumelo 4475 (C/CM2x and C/CM4x). The allotetraploid FlhorAG1 (C/FL4x) was also included in the experimental design. The impact of nutrient deficiency on these seven scion/rootstock combinations was evaluated at root and leaf levels by investigating anatomical parameters, photosynthetic properties and oxidative and antioxidant metabolism. Nutrient deficiency affects foliar tissues, physiological parameters and oxidative metabolism in leaves and roots in different ways depending on the rootstock genotype and ploidy level. The best known nutrient deficiency-tolerant common clementine scions were grafted with the doubled diploid Citrumelo 4475 (C/CM4x) and the allotetraploid FlhorAG1 (C/FL4x). These combinations were found to have less foliar damage, fewer changes of photosynthetic processes [leaf net photosynthetic rate (P(net)), stomatal conductance (g(s)), transpiration (E), maximum quantum efficiency of PSII (F(v)/F(m)), electron transport rate (ETR), ETR/P(net)], and effective quantum yield of PSII [Y(II)], less malondialdehyde accumulation in leaves and better functional enzymatic and non-enzymatic antioxidant systems. Common clementine scions grafted on other 4× rootstocks did not show better tolerance than those grafted on their 2× counterparts. Chromosome doubling of rootstocks did not systematically improve the tolerance of the common clementine scion to nutrient deficiency.
format Online
Article
Text
id pubmed-8060649
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-80606492021-04-23 Influence of Rootstock Genotype and Ploidy Level on Common Clementine (Citrus clementina Hort. ex Tan) Tolerance to Nutrient Deficiency Oustric, Julie Herbette, Stéphane Morillon, Raphaël Giannettini, Jean Berti, Liliane Santini, Jérémie Front Plant Sci Plant Science Nutrient deficiency, in particular when this involves a major macronutrient (N, P, and K), is a limiting factor on the performance of plants in their natural habitat and agricultural environment. In the citrus industry, one of the eco-friendliest techniques for improving tolerance to biotic and abiotic stress is based on the grafting of a rootstock and a scion of economic interest. Scion tolerance may be improved by a tetraploid rootstock. The purpose of this study was to highlight if tolerance of a common clementine scion (C) (Citrus clementina Hort. ex Tan) to nutrient deficiency could be improved by several diploid (2×) and their tetraploid (4×) counterparts citrus genotypes commonly used as rootstocks: Trifoliate orange × Cleopatra mandarin (C/PMC2x and C/PMC4x), Carrizo citrange (C/CC2x and C/CC4x), Citrumelo 4475 (C/CM2x and C/CM4x). The allotetraploid FlhorAG1 (C/FL4x) was also included in the experimental design. The impact of nutrient deficiency on these seven scion/rootstock combinations was evaluated at root and leaf levels by investigating anatomical parameters, photosynthetic properties and oxidative and antioxidant metabolism. Nutrient deficiency affects foliar tissues, physiological parameters and oxidative metabolism in leaves and roots in different ways depending on the rootstock genotype and ploidy level. The best known nutrient deficiency-tolerant common clementine scions were grafted with the doubled diploid Citrumelo 4475 (C/CM4x) and the allotetraploid FlhorAG1 (C/FL4x). These combinations were found to have less foliar damage, fewer changes of photosynthetic processes [leaf net photosynthetic rate (P(net)), stomatal conductance (g(s)), transpiration (E), maximum quantum efficiency of PSII (F(v)/F(m)), electron transport rate (ETR), ETR/P(net)], and effective quantum yield of PSII [Y(II)], less malondialdehyde accumulation in leaves and better functional enzymatic and non-enzymatic antioxidant systems. Common clementine scions grafted on other 4× rootstocks did not show better tolerance than those grafted on their 2× counterparts. Chromosome doubling of rootstocks did not systematically improve the tolerance of the common clementine scion to nutrient deficiency. Frontiers Media S.A. 2021-04-08 /pmc/articles/PMC8060649/ /pubmed/33897725 http://dx.doi.org/10.3389/fpls.2021.634237 Text en Copyright © 2021 Oustric, Herbette, Morillon, Giannettini, Berti and Santini. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Oustric, Julie
Herbette, Stéphane
Morillon, Raphaël
Giannettini, Jean
Berti, Liliane
Santini, Jérémie
Influence of Rootstock Genotype and Ploidy Level on Common Clementine (Citrus clementina Hort. ex Tan) Tolerance to Nutrient Deficiency
title Influence of Rootstock Genotype and Ploidy Level on Common Clementine (Citrus clementina Hort. ex Tan) Tolerance to Nutrient Deficiency
title_full Influence of Rootstock Genotype and Ploidy Level on Common Clementine (Citrus clementina Hort. ex Tan) Tolerance to Nutrient Deficiency
title_fullStr Influence of Rootstock Genotype and Ploidy Level on Common Clementine (Citrus clementina Hort. ex Tan) Tolerance to Nutrient Deficiency
title_full_unstemmed Influence of Rootstock Genotype and Ploidy Level on Common Clementine (Citrus clementina Hort. ex Tan) Tolerance to Nutrient Deficiency
title_short Influence of Rootstock Genotype and Ploidy Level on Common Clementine (Citrus clementina Hort. ex Tan) Tolerance to Nutrient Deficiency
title_sort influence of rootstock genotype and ploidy level on common clementine (citrus clementina hort. ex tan) tolerance to nutrient deficiency
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8060649/
https://www.ncbi.nlm.nih.gov/pubmed/33897725
http://dx.doi.org/10.3389/fpls.2021.634237
work_keys_str_mv AT oustricjulie influenceofrootstockgenotypeandploidyleveloncommonclementinecitrusclementinahortextantolerancetonutrientdeficiency
AT herbettestephane influenceofrootstockgenotypeandploidyleveloncommonclementinecitrusclementinahortextantolerancetonutrientdeficiency
AT morillonraphael influenceofrootstockgenotypeandploidyleveloncommonclementinecitrusclementinahortextantolerancetonutrientdeficiency
AT giannettinijean influenceofrootstockgenotypeandploidyleveloncommonclementinecitrusclementinahortextantolerancetonutrientdeficiency
AT bertililiane influenceofrootstockgenotypeandploidyleveloncommonclementinecitrusclementinahortextantolerancetonutrientdeficiency
AT santinijeremie influenceofrootstockgenotypeandploidyleveloncommonclementinecitrusclementinahortextantolerancetonutrientdeficiency