Cargando…
Dosimetric assessment of the impact of low-cost materials used in stereolithography in high-dose-rate brachytherapy
PURPOSE: 3D printing has become a popular and widely available technique of rapid prototyping. The impact of used materials on the dose distribution has been studied for high energy sources. However, brachytherapy sources emit lower energy photons, and materials used in 3D printing may differ. This...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Termedia Publishing House
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8060963/ https://www.ncbi.nlm.nih.gov/pubmed/33897793 http://dx.doi.org/10.5114/jcb.2021.105287 |
_version_ | 1783681468438937600 |
---|---|
author | Bielęda, Grzegorz Zwierzchowski, Grzegorz Rosłan, Katarzyna Adamus, Agnieszka Malicki, Julian |
author_facet | Bielęda, Grzegorz Zwierzchowski, Grzegorz Rosłan, Katarzyna Adamus, Agnieszka Malicki, Julian |
author_sort | Bielęda, Grzegorz |
collection | PubMed |
description | PURPOSE: 3D printing has become a popular and widely available technique of rapid prototyping. The impact of used materials on the dose distribution has been studied for high energy sources. However, brachytherapy sources emit lower energy photons, and materials used in 3D printing may differ. This study was conducted to analyze the influence of common materials (polylactic acid – PLA and acrylonitrile butadiene styrene – ABS) used in stereolithography. MATERIAL AND METHODS: A 3D-printed phantom was designed, printed, and used to calibrate Gafchromic films. In the next step, a range of 1 mm thick plates of PLA and ABS (from zero to thirty) were inserted between source and detector to measure the impact of studied materials on delivered dose. Measurements were performed using a calibrated radiochromic film and Farmer ionization chamber in water. RESULTS: No statistically significant correlation (p = 0.4854) between the thickness of inserted PLA and the dose delivered to the film was obtained. With ionization chamber, Spearman’s rank order test showed a significant correlation (p = 0.00004); however, the correlation was found weak. In case of ABS measurement, a statistically significant (p = 0.0159), yet weak negative correlation was found between the thickness of used material and the dose delivered to the film. On the other hand, a weak statistically significant (p = 0.0212) but positive correlation was found when the dose was measured with Farmer ionization chamber. We find these correlations false, as all measured doses were within the measurement uncertainty range (film ±8.0%, Farmer ±8.8%) from 100% of the prescribed dose. CONCLUSIONS: According to obtained results, with the accuracy of measurement under clinical conditions, the impact of highly filled PLA and ABS printed objects on the dose distribution from an (192)Ir source in water can be omitted. |
format | Online Article Text |
id | pubmed-8060963 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Termedia Publishing House |
record_format | MEDLINE/PubMed |
spelling | pubmed-80609632021-04-23 Dosimetric assessment of the impact of low-cost materials used in stereolithography in high-dose-rate brachytherapy Bielęda, Grzegorz Zwierzchowski, Grzegorz Rosłan, Katarzyna Adamus, Agnieszka Malicki, Julian J Contemp Brachytherapy Original Paper PURPOSE: 3D printing has become a popular and widely available technique of rapid prototyping. The impact of used materials on the dose distribution has been studied for high energy sources. However, brachytherapy sources emit lower energy photons, and materials used in 3D printing may differ. This study was conducted to analyze the influence of common materials (polylactic acid – PLA and acrylonitrile butadiene styrene – ABS) used in stereolithography. MATERIAL AND METHODS: A 3D-printed phantom was designed, printed, and used to calibrate Gafchromic films. In the next step, a range of 1 mm thick plates of PLA and ABS (from zero to thirty) were inserted between source and detector to measure the impact of studied materials on delivered dose. Measurements were performed using a calibrated radiochromic film and Farmer ionization chamber in water. RESULTS: No statistically significant correlation (p = 0.4854) between the thickness of inserted PLA and the dose delivered to the film was obtained. With ionization chamber, Spearman’s rank order test showed a significant correlation (p = 0.00004); however, the correlation was found weak. In case of ABS measurement, a statistically significant (p = 0.0159), yet weak negative correlation was found between the thickness of used material and the dose delivered to the film. On the other hand, a weak statistically significant (p = 0.0212) but positive correlation was found when the dose was measured with Farmer ionization chamber. We find these correlations false, as all measured doses were within the measurement uncertainty range (film ±8.0%, Farmer ±8.8%) from 100% of the prescribed dose. CONCLUSIONS: According to obtained results, with the accuracy of measurement under clinical conditions, the impact of highly filled PLA and ABS printed objects on the dose distribution from an (192)Ir source in water can be omitted. Termedia Publishing House 2021-04-14 2021-04 /pmc/articles/PMC8060963/ /pubmed/33897793 http://dx.doi.org/10.5114/jcb.2021.105287 Text en Copyright © 2021 Termedia https://creativecommons.org/licenses/by-nc-sa/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). License (http://creativecommons.org/licenses/by-nc-sa/4.0/ (https://creativecommons.org/licenses/by-nc-sa/4.0/) ) |
spellingShingle | Original Paper Bielęda, Grzegorz Zwierzchowski, Grzegorz Rosłan, Katarzyna Adamus, Agnieszka Malicki, Julian Dosimetric assessment of the impact of low-cost materials used in stereolithography in high-dose-rate brachytherapy |
title | Dosimetric assessment of the impact of low-cost materials used in stereolithography in high-dose-rate brachytherapy |
title_full | Dosimetric assessment of the impact of low-cost materials used in stereolithography in high-dose-rate brachytherapy |
title_fullStr | Dosimetric assessment of the impact of low-cost materials used in stereolithography in high-dose-rate brachytherapy |
title_full_unstemmed | Dosimetric assessment of the impact of low-cost materials used in stereolithography in high-dose-rate brachytherapy |
title_short | Dosimetric assessment of the impact of low-cost materials used in stereolithography in high-dose-rate brachytherapy |
title_sort | dosimetric assessment of the impact of low-cost materials used in stereolithography in high-dose-rate brachytherapy |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8060963/ https://www.ncbi.nlm.nih.gov/pubmed/33897793 http://dx.doi.org/10.5114/jcb.2021.105287 |
work_keys_str_mv | AT bieledagrzegorz dosimetricassessmentoftheimpactoflowcostmaterialsusedinstereolithographyinhighdoseratebrachytherapy AT zwierzchowskigrzegorz dosimetricassessmentoftheimpactoflowcostmaterialsusedinstereolithographyinhighdoseratebrachytherapy AT rosłankatarzyna dosimetricassessmentoftheimpactoflowcostmaterialsusedinstereolithographyinhighdoseratebrachytherapy AT adamusagnieszka dosimetricassessmentoftheimpactoflowcostmaterialsusedinstereolithographyinhighdoseratebrachytherapy AT malickijulian dosimetricassessmentoftheimpactoflowcostmaterialsusedinstereolithographyinhighdoseratebrachytherapy |