Cargando…
MiRNA-disease association prediction via hypergraph learning based on high-dimensionality features
BACKGROUND: MicroRNAs (miRNAs) have been confirmed to have close relationship with various human complex diseases. The identification of disease-related miRNAs provides great insights into the underlying pathogenesis of diseases. However, it is still a big challenge to identify which miRNAs are rela...
Autores principales: | Wang, Yu-Tian, Wu, Qing-Wen, Gao, Zhen, Ni, Jian-Cheng, Zheng, Chun-Hou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8061020/ https://www.ncbi.nlm.nih.gov/pubmed/33882934 http://dx.doi.org/10.1186/s12911-020-01320-w |
Ejemplares similares
-
MSCHLMDA: Multi-Similarity Based Combinative Hypergraph Learning for Predicting MiRNA-Disease Association
por: Wu, Qingwen, et al.
Publicado: (2020) -
Constructing higher-order miRNA-mRNA interaction networks in prostate cancer via hypergraph-based learning
por: Kim, Soo-Jin, et al.
Publicado: (2013) -
Multimodal Feature Fusion Based Hypergraph Learning Model
por: Yang, Zhe, et al.
Publicado: (2022) -
Graph regularized L(2,1)-nonnegative matrix factorization for miRNA-disease association prediction
por: Gao, Zhen, et al.
Publicado: (2020) -
Hyper-Mol: Molecular Representation Learning via Fingerprint-Based Hypergraph
por: Cui, Shicheng, et al.
Publicado: (2023)