Cargando…
Threefold helical assembly via hydroxy hydrogen bonds: the 2:1 co-crystal of bicyclo[3.3.0]octane-endo-3,endo-7-diol and bicyclo[3.3.0]octane-endo-3,exo-7-diol
Reduction of bicyclo[3.3.0]octane-3,7-dione yields a mixture of the endo-3,endo-7-diol and endo-3, exo-7-diol (C(8)H(14)O(2)) isomers (5 and 6). These form (5)(2)·(6) co-crystals in the monoclinic P2(1)/n space group (with Z = 6, Z′ = 1.5) rather than undergoing separation by means of fractional r...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8061109/ https://www.ncbi.nlm.nih.gov/pubmed/33953950 http://dx.doi.org/10.1107/S2056989021001730 |
Sumario: | Reduction of bicyclo[3.3.0]octane-3,7-dione yields a mixture of the endo-3,endo-7-diol and endo-3, exo-7-diol (C(8)H(14)O(2)) isomers (5 and 6). These form (5)(2)·(6) co-crystals in the monoclinic P2(1)/n space group (with Z = 6, Z′ = 1.5) rather than undergoing separation by means of fractional recrystallization or column chromatography. The molecule of 5 occupies a general position, whereas the molecule of 6 is disordered over two orientations across a centre of symmetry with occupancies of 0.463 (2) and 0.037 (2). Individual diol hydroxy groups associate around a pseudo-threefold screw axis by means of hydrogen bonding. The second hydroxy group of each diol behaves in a similar manner, generating a three-dimensional hydrogen-bonded network structure. This hydrogen-bond connectivity is identical to that present in three known helical tubuland diol–hydroquinone co-crystals, and the new crystal structure is even more similar to two homologous aliphatic diol co-crystals. |
---|