Cargando…
Sex‐ and time‐specific parental effects of warming on reproduction and offspring quality in a coral reef fish
Global warming can disrupt reproduction or lead to fewer and poorer quality offspring, owing to the thermally sensitive nature of reproductive physiology. However, phenotypic plasticity may enable some animals to adjust the thermal sensitivity of reproduction to maintain performance in warmer condit...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8061261/ https://www.ncbi.nlm.nih.gov/pubmed/33897826 http://dx.doi.org/10.1111/eva.13187 |
_version_ | 1783681530255638528 |
---|---|
author | Spinks, Rachel K. Bonzi, Lucrezia C. Ravasi, Timothy Munday, Philip L. Donelson, Jennifer M. |
author_facet | Spinks, Rachel K. Bonzi, Lucrezia C. Ravasi, Timothy Munday, Philip L. Donelson, Jennifer M. |
author_sort | Spinks, Rachel K. |
collection | PubMed |
description | Global warming can disrupt reproduction or lead to fewer and poorer quality offspring, owing to the thermally sensitive nature of reproductive physiology. However, phenotypic plasticity may enable some animals to adjust the thermal sensitivity of reproduction to maintain performance in warmer conditions. Whether elevated temperature affects reproduction may depend on the timing of exposure to warming and the sex of the parent exposed. We exposed male and female coral reef damselfish (Acanthochromis polyacanthus) during development, reproduction or both life stages to an elevated temperature (+1.5°C) consistent with projected ocean warming and measured reproductive output and newly hatched offspring performance relative to pairs reared in a present‐day control temperature. We found female development in elevated temperature increased the probability of breeding, but reproduction ceased if warming continued to the reproductive stage, irrespective of the male's developmental experience. Females that developed in warmer conditions, but reproduced in control conditions, also produced larger eggs and hatchlings with greater yolk reserves. By contrast, male development or pairs reproducing in higher temperature produced fewer and poorer quality offspring. Such changes may be due to alterations in sex hormones or an endocrine stress response. In nature, this could mean female fish developing during a marine heatwave may have enhanced reproduction and produce higher quality offspring compared with females developing in a year of usual thermal conditions. However, male development during a heatwave would likely result in reduced reproductive output. Furthermore, the lack of reproduction from an average increase in temperature could lead to population decline. Our results demonstrate how the timing of exposure differentially influences females and males and how this translates to effects on reproduction and population sustainability in a warming world. |
format | Online Article Text |
id | pubmed-8061261 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-80612612021-04-23 Sex‐ and time‐specific parental effects of warming on reproduction and offspring quality in a coral reef fish Spinks, Rachel K. Bonzi, Lucrezia C. Ravasi, Timothy Munday, Philip L. Donelson, Jennifer M. Evol Appl Original Articles Global warming can disrupt reproduction or lead to fewer and poorer quality offspring, owing to the thermally sensitive nature of reproductive physiology. However, phenotypic plasticity may enable some animals to adjust the thermal sensitivity of reproduction to maintain performance in warmer conditions. Whether elevated temperature affects reproduction may depend on the timing of exposure to warming and the sex of the parent exposed. We exposed male and female coral reef damselfish (Acanthochromis polyacanthus) during development, reproduction or both life stages to an elevated temperature (+1.5°C) consistent with projected ocean warming and measured reproductive output and newly hatched offspring performance relative to pairs reared in a present‐day control temperature. We found female development in elevated temperature increased the probability of breeding, but reproduction ceased if warming continued to the reproductive stage, irrespective of the male's developmental experience. Females that developed in warmer conditions, but reproduced in control conditions, also produced larger eggs and hatchlings with greater yolk reserves. By contrast, male development or pairs reproducing in higher temperature produced fewer and poorer quality offspring. Such changes may be due to alterations in sex hormones or an endocrine stress response. In nature, this could mean female fish developing during a marine heatwave may have enhanced reproduction and produce higher quality offspring compared with females developing in a year of usual thermal conditions. However, male development during a heatwave would likely result in reduced reproductive output. Furthermore, the lack of reproduction from an average increase in temperature could lead to population decline. Our results demonstrate how the timing of exposure differentially influences females and males and how this translates to effects on reproduction and population sustainability in a warming world. John Wiley and Sons Inc. 2021-01-13 /pmc/articles/PMC8061261/ /pubmed/33897826 http://dx.doi.org/10.1111/eva.13187 Text en © 2020 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Spinks, Rachel K. Bonzi, Lucrezia C. Ravasi, Timothy Munday, Philip L. Donelson, Jennifer M. Sex‐ and time‐specific parental effects of warming on reproduction and offspring quality in a coral reef fish |
title | Sex‐ and time‐specific parental effects of warming on reproduction and offspring quality in a coral reef fish |
title_full | Sex‐ and time‐specific parental effects of warming on reproduction and offspring quality in a coral reef fish |
title_fullStr | Sex‐ and time‐specific parental effects of warming on reproduction and offspring quality in a coral reef fish |
title_full_unstemmed | Sex‐ and time‐specific parental effects of warming on reproduction and offspring quality in a coral reef fish |
title_short | Sex‐ and time‐specific parental effects of warming on reproduction and offspring quality in a coral reef fish |
title_sort | sex‐ and time‐specific parental effects of warming on reproduction and offspring quality in a coral reef fish |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8061261/ https://www.ncbi.nlm.nih.gov/pubmed/33897826 http://dx.doi.org/10.1111/eva.13187 |
work_keys_str_mv | AT spinksrachelk sexandtimespecificparentaleffectsofwarmingonreproductionandoffspringqualityinacoralreeffish AT bonzilucreziac sexandtimespecificparentaleffectsofwarmingonreproductionandoffspringqualityinacoralreeffish AT ravasitimothy sexandtimespecificparentaleffectsofwarmingonreproductionandoffspringqualityinacoralreeffish AT mundayphilipl sexandtimespecificparentaleffectsofwarmingonreproductionandoffspringqualityinacoralreeffish AT donelsonjenniferm sexandtimespecificparentaleffectsofwarmingonreproductionandoffspringqualityinacoralreeffish |