Cargando…
Multi-Classification of Brain Tumor MRI Images Using Deep Convolutional Neural Network with Fully Optimized Framework
Brain tumor diagnosis and classification still rely on histopathological analysis of biopsy specimens today. The current method is invasive, time-consuming and prone to manual errors. These disadvantages show how essential it is to perform a fully automated method for multi-classification of brain t...
Autor principal: | Irmak, Emrah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8061452/ http://dx.doi.org/10.1007/s40998-021-00426-9 |
Ejemplares similares
-
Fully automatic wound segmentation with deep convolutional neural networks
por: Wang, Chuanbo, et al.
Publicado: (2020) -
Hyperspectral Image Classification with Optimized Compressed Synergic Deep Convolution Neural Network with Aquila Optimization
por: Subba Reddy, Tatireddy, et al.
Publicado: (2022) -
An Efficient Multi-Scale Convolutional Neural Network Based Multi-Class Brain MRI Classification for SaMD
por: Yazdan, Syed Ali, et al.
Publicado: (2022) -
Fully Convolutional Deep Neural Networks with Optimized Hyperparameters for Detection of Shockable and Non-Shockable Rhythms
por: Krasteva, Vessela, et al.
Publicado: (2020) -
A deep crowd density classification model for Hajj pilgrimage using fully convolutional neural network
por: Bhuiyan, Md Roman, et al.
Publicado: (2022)