Cargando…

Injury-induced Cavl-expressing cells at lesion rostral side play major roles in spinal cord regeneration

The extent of cellular heterogeneity involved in neuronal regeneration after spinal cord injury (SCI) remains unclear. Therefore, we established stress-responsive transgenic zebrafish embryos with SCI. As a result, we found an SCI-induced cell population, termed SCI stress-responsive regenerating ce...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeng, Chih-Wei, Kamei, Yasuhiro, Shigenobu, Shuji, Sheu, Jin-Chuan, Tsai, Huai-Jen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8061693/
https://www.ncbi.nlm.nih.gov/pubmed/33622104
http://dx.doi.org/10.1098/rsob.200304
Descripción
Sumario:The extent of cellular heterogeneity involved in neuronal regeneration after spinal cord injury (SCI) remains unclear. Therefore, we established stress-responsive transgenic zebrafish embryos with SCI. As a result, we found an SCI-induced cell population, termed SCI stress-responsive regenerating cells (SrRCs), essential for neuronal regeneration post-SCI. SrRCs were mostly composed of subtypes of radial glia (RGs-SrRCs) and neuron stem/progenitor cells (NSPCs-SrRCs) that are able to differentiate into neurons, and they formed a bridge across the lesion and connected with neighbouring undamaged motor neurons post-SCI. Compared to SrRCs at the caudal side of the SCI site (caudal-SrRCs), rostral-SrRCs participated more actively in neuronal regeneration. After RNA-seq analysis, we discovered that caveolin 1 (cav1) was significantly upregulated in rostral-SrRCs and that cav1 was responsible for the axonal regrowth and regenerative capability of rostral-SrRCs. Collectively, we define a specific SCI-induced cell population, SrRCs, involved in neuronal regeneration, demonstrate that rostral-SrRCs exhibit higher neuronal differentiation capability and prove that cav1 is predominantly expressed in rostral-SrRCs, playing a major role in neuronal regeneration after SCI.