Cargando…
Predicting Intensive Care Transfers and Other Unforeseen Events: Analytic Model Validation Study and Comparison to Existing Methods
BACKGROUND: COVID-19 has led to an unprecedented strain on health care facilities across the United States. Accurately identifying patients at an increased risk of deterioration may help hospitals manage their resources while improving the quality of patient care. Here, we present the results of an...
Autores principales: | Cummings, Brandon C, Ansari, Sardar, Motyka, Jonathan R, Wang, Guan, Medlin Jr, Richard P, Kronick, Steven L, Singh, Karandeep, Park, Pauline K, Napolitano, Lena M, Dickson, Robert P, Mathis, Michael R, Sjoding, Michael W, Admon, Andrew J, Blank, Ross, McSparron, Jakob I, Ward, Kevin R, Gillies, Christopher E |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8061893/ https://www.ncbi.nlm.nih.gov/pubmed/33818393 http://dx.doi.org/10.2196/25066 |
Ejemplares similares
-
External Validation and Comparison of a General Ward Deterioration Index Between Diversely Different Health Systems
por: Cummings, Brandon C., et al.
Publicado: (2023) -
Comparing Clinical Features and Outcomes in Mechanically Ventilated Patients with COVID-19 and Acute Respiratory Distress Syndrome
por: Sjoding, Michael W., et al.
Publicado: (2021) -
Deep learning to detect acute respiratory distress syndrome on chest radiographs: a retrospective study with external validation
por: Sjoding, Michael W, et al.
Publicado: (2021) -
Unforeseen Mentor
por: Constantino, Eduardo
Publicado: (2021) -
Acute Exacerbation of COPD
por: Lief, Lindsay, et al.
Publicado: (2019)