Cargando…
Image-derived mean velocity measurement for prediction of coronary flow reserve in a canonical stenosis phantom using magnetic particle imaging
INTRODUCTION: Aim of this study is to evaluate whether magnetic particle imaging (MPI) is capable of measuring velocities occurring in the coronary arteries and to compute coronary flow reserve (CFR) in a canonical phantom as a preliminary study. METHODS: For basic velocity measurements, a circulati...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8061921/ https://www.ncbi.nlm.nih.gov/pubmed/33886607 http://dx.doi.org/10.1371/journal.pone.0249697 |
Sumario: | INTRODUCTION: Aim of this study is to evaluate whether magnetic particle imaging (MPI) is capable of measuring velocities occurring in the coronary arteries and to compute coronary flow reserve (CFR) in a canonical phantom as a preliminary study. METHODS: For basic velocity measurements, a circulation phantom was designed containing replaceable glass tubes with three varying inner diameters, matching coronary-vessel diameters. Standardised boluses of superparamagnetic-iron-oxide-nanoparticles were injected and visualised by MPI. Two image-based techniques were competitively applied to calibrate the respective glass tube and to compute the mean velocity: full-duration-at-half-maximum (FDHM) and tracer dilution (TD) method. For CFR-calculation, four necessary settings of the circulation model of a virtual vessel with an inner diameter of 4 mm were generated using differently sized glass tubes and a stenosis model. The respective velocities in stenotic glass tubes were computed without recalibration. RESULTS: On velocity level, comparison showed a good agreement (r(FDHM) = 0.869, r(TD) = 0.796) between techniques, preferably better for 4 mm and 6 mm inner diameter glass tubes. On CFR level MPI-derived CFR-prediction performed considerably inferior with a relative error of 20–44%. CONCLUSIONS: MPI has the ability to reliably measure coronary blood velocities at rest as well as under hyperaemia and therefore may be suitable for CFR calculation. Calibration-associated accuracy of CFR-measurements has to be improved substantially in further studies. |
---|