Cargando…
Sparse Poisson regression via mixed-integer optimization
We present a mixed-integer optimization (MIO) approach to sparse Poisson regression. The MIO approach to sparse linear regression was first proposed in the 1970s, but has recently received renewed attention due to advances in optimization algorithms and computer hardware. In contrast to many sparse...
Autores principales: | Saishu, Hiroki, Kudo, Kota, Takano, Yuichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062005/ https://www.ncbi.nlm.nih.gov/pubmed/33886612 http://dx.doi.org/10.1371/journal.pone.0249916 |
Ejemplares similares
-
Solutions to problems of nonexistence of parameter estimates and sparse data bias in Poisson regression
por: Joshi, Ashwini, et al.
Publicado: (2021) -
Unmixing Biological Fluorescence Image Data with Sparse and Low-Rank Poisson Regression
por: Wang, Ruogu, et al.
Publicado: (2023) -
Optimal training of integer-valued neural networks with mixed integer programming
por: Thorbjarnarson, Tómas, et al.
Publicado: (2023) -
Unmixing biological fluorescence image data with sparse and low-rank Poisson regression
por: Wang, Ruogu, et al.
Publicado: (2023) -
A first-order binomial-mixed Poisson integer-valued autoregressive model with serially dependent innovations
por: Chen, Zezhun, et al.
Publicado: (2021)