Cargando…
Modeling the spread of fake news on Twitter
Fake news can have a significant negative impact on society because of the growing use of mobile devices and the worldwide increase in Internet access. It is therefore essential to develop a simple mathematical model to understand the online dissemination of fake news. In this study, we propose a po...
Autores principales: | Murayama, Taichi, Wakamiya, Shoko, Aramaki, Eiji, Kobayashi, Ryota |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062041/ https://www.ncbi.nlm.nih.gov/pubmed/33886665 http://dx.doi.org/10.1371/journal.pone.0250419 |
Ejemplares similares
-
Robust two-stage influenza prediction model considering regular and irregular trends
por: Murayama, Taichi, et al.
Publicado: (2020) -
Twitter-Based Influenza Detection After Flu Peak via Tweets With Indirect Information: Text Mining Study
por: Wakamiya, Shoko, et al.
Publicado: (2018) -
Predicting regional influenza epidemics with uncertainty estimation using commuting data in Japan
por: Murayama, Taichi, et al.
Publicado: (2021) -
Monitoring Mentions of COVID-19 Vaccine Side Effects on Japanese and Indonesian Twitter: Infodemiological Study
por: Ferawati, Kiki, et al.
Publicado: (2022) -
Tweet Classification Toward Twitter-Based Disease Surveillance: New Data, Methods, and Evaluations
por: Wakamiya, Shoko, et al.
Publicado: (2019)