Cargando…
Effects of phytonutrient-supplemented diets on the intestinal microbiota of Cyprinus carpio
In the aquaculture sector, a strategy for the more efficient use of resources and proper disease control is needed to overcome the challenges of meat production worldwide. Modulation of the gastrointestinal tract microbiota is a promising approach for promoting animal health and preventing infection...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062051/ https://www.ncbi.nlm.nih.gov/pubmed/33886562 http://dx.doi.org/10.1371/journal.pone.0248537 |
_version_ | 1783681688758386688 |
---|---|
author | Feher, Milan Fauszt, Peter Tolnai, Emese Fidler, Gabor Pesti-Asboth, Georgina Stagel, Aniko Szucs, Istvan Biro, Sandor Remenyik, Judit Paholcsek, Melinda Stundl, Laszlo |
author_facet | Feher, Milan Fauszt, Peter Tolnai, Emese Fidler, Gabor Pesti-Asboth, Georgina Stagel, Aniko Szucs, Istvan Biro, Sandor Remenyik, Judit Paholcsek, Melinda Stundl, Laszlo |
author_sort | Feher, Milan |
collection | PubMed |
description | In the aquaculture sector, a strategy for the more efficient use of resources and proper disease control is needed to overcome the challenges of meat production worldwide. Modulation of the gastrointestinal tract microbiota is a promising approach for promoting animal health and preventing infection. This feeding experiment was conducted to discover the phytonutrient-induced changes in the gastrointestinal tract microbiota of common carp (Cyprinus carpio). Acclimatized animals aged 7 months (30 weeks) were divided randomly into five experimental groups to investigate the effects of the applied feed additives. The dietary supplements were manufactured from anthocyanin-containing processing wastes from the food industry, specifically the production of Hungarian sour cherry extract, synbiotics from fermented corn, and fermentable oligosaccharides from Hungarian sweet red pepper seeds and carotenoids from Hungarian sweet red pepper pulps, applied at a dose of 1%. The gut contents of the animals were collected at four time points throughout the 6-week study period. To track the compositional and diversity changes in the microbiota of the carp intestinal tract, V3-V4 16S rRNA gene-based metagenomic sequencing was performed. The growth performance of common carp juveniles was not significantly affected by supplementation of the basal diet with plant extracts. Phytonutrients improve the community diversity, increase the Clostridium and Lactobacillus abundances and decrease the abundances of potentially pathogenic and spoilage bacteria, such as Shewanella, Pseudomonas, Acinetobacter and Aeromonas. The phyla Proteobacteria, Tenericutes and Chlamydiae were positively correlated with the body weight, whereas Spirochaetes and Firmicutes exhibited negatively correlations with the body weight. We hypothesize that the application of phytonutrients in aquaculture settings might be a reasonable green approach for easing the usage of antibiotics. |
format | Online Article Text |
id | pubmed-8062051 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-80620512021-05-04 Effects of phytonutrient-supplemented diets on the intestinal microbiota of Cyprinus carpio Feher, Milan Fauszt, Peter Tolnai, Emese Fidler, Gabor Pesti-Asboth, Georgina Stagel, Aniko Szucs, Istvan Biro, Sandor Remenyik, Judit Paholcsek, Melinda Stundl, Laszlo PLoS One Research Article In the aquaculture sector, a strategy for the more efficient use of resources and proper disease control is needed to overcome the challenges of meat production worldwide. Modulation of the gastrointestinal tract microbiota is a promising approach for promoting animal health and preventing infection. This feeding experiment was conducted to discover the phytonutrient-induced changes in the gastrointestinal tract microbiota of common carp (Cyprinus carpio). Acclimatized animals aged 7 months (30 weeks) were divided randomly into five experimental groups to investigate the effects of the applied feed additives. The dietary supplements were manufactured from anthocyanin-containing processing wastes from the food industry, specifically the production of Hungarian sour cherry extract, synbiotics from fermented corn, and fermentable oligosaccharides from Hungarian sweet red pepper seeds and carotenoids from Hungarian sweet red pepper pulps, applied at a dose of 1%. The gut contents of the animals were collected at four time points throughout the 6-week study period. To track the compositional and diversity changes in the microbiota of the carp intestinal tract, V3-V4 16S rRNA gene-based metagenomic sequencing was performed. The growth performance of common carp juveniles was not significantly affected by supplementation of the basal diet with plant extracts. Phytonutrients improve the community diversity, increase the Clostridium and Lactobacillus abundances and decrease the abundances of potentially pathogenic and spoilage bacteria, such as Shewanella, Pseudomonas, Acinetobacter and Aeromonas. The phyla Proteobacteria, Tenericutes and Chlamydiae were positively correlated with the body weight, whereas Spirochaetes and Firmicutes exhibited negatively correlations with the body weight. We hypothesize that the application of phytonutrients in aquaculture settings might be a reasonable green approach for easing the usage of antibiotics. Public Library of Science 2021-04-22 /pmc/articles/PMC8062051/ /pubmed/33886562 http://dx.doi.org/10.1371/journal.pone.0248537 Text en © 2021 Feher et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Feher, Milan Fauszt, Peter Tolnai, Emese Fidler, Gabor Pesti-Asboth, Georgina Stagel, Aniko Szucs, Istvan Biro, Sandor Remenyik, Judit Paholcsek, Melinda Stundl, Laszlo Effects of phytonutrient-supplemented diets on the intestinal microbiota of Cyprinus carpio |
title | Effects of phytonutrient-supplemented diets on the intestinal microbiota of Cyprinus carpio |
title_full | Effects of phytonutrient-supplemented diets on the intestinal microbiota of Cyprinus carpio |
title_fullStr | Effects of phytonutrient-supplemented diets on the intestinal microbiota of Cyprinus carpio |
title_full_unstemmed | Effects of phytonutrient-supplemented diets on the intestinal microbiota of Cyprinus carpio |
title_short | Effects of phytonutrient-supplemented diets on the intestinal microbiota of Cyprinus carpio |
title_sort | effects of phytonutrient-supplemented diets on the intestinal microbiota of cyprinus carpio |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062051/ https://www.ncbi.nlm.nih.gov/pubmed/33886562 http://dx.doi.org/10.1371/journal.pone.0248537 |
work_keys_str_mv | AT fehermilan effectsofphytonutrientsupplementeddietsontheintestinalmicrobiotaofcyprinuscarpio AT fausztpeter effectsofphytonutrientsupplementeddietsontheintestinalmicrobiotaofcyprinuscarpio AT tolnaiemese effectsofphytonutrientsupplementeddietsontheintestinalmicrobiotaofcyprinuscarpio AT fidlergabor effectsofphytonutrientsupplementeddietsontheintestinalmicrobiotaofcyprinuscarpio AT pestiasbothgeorgina effectsofphytonutrientsupplementeddietsontheintestinalmicrobiotaofcyprinuscarpio AT stagelaniko effectsofphytonutrientsupplementeddietsontheintestinalmicrobiotaofcyprinuscarpio AT szucsistvan effectsofphytonutrientsupplementeddietsontheintestinalmicrobiotaofcyprinuscarpio AT birosandor effectsofphytonutrientsupplementeddietsontheintestinalmicrobiotaofcyprinuscarpio AT remenyikjudit effectsofphytonutrientsupplementeddietsontheintestinalmicrobiotaofcyprinuscarpio AT paholcsekmelinda effectsofphytonutrientsupplementeddietsontheintestinalmicrobiotaofcyprinuscarpio AT stundllaszlo effectsofphytonutrientsupplementeddietsontheintestinalmicrobiotaofcyprinuscarpio |