Cargando…
Diagnostik von Erkrankungen des Sehnervenkopfes in Zeiten von künstlicher Intelligenz und Big Data
BACKGROUND: The use of artificial intelligence (AI) interesting for automated image segmentation, analysis and classification, among others and has already been described for various fields of ophthalmology. OBJECTIVE: This manuscript provides an overview of current approaches and advances in the ap...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Medizin
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062109/ https://www.ncbi.nlm.nih.gov/pubmed/33890129 http://dx.doi.org/10.1007/s00347-021-01385-6 |
_version_ | 1783681700213030912 |
---|---|
author | Diener, R. Treder, M. Eter, N. |
author_facet | Diener, R. Treder, M. Eter, N. |
author_sort | Diener, R. |
collection | PubMed |
description | BACKGROUND: The use of artificial intelligence (AI) interesting for automated image segmentation, analysis and classification, among others and has already been described for various fields of ophthalmology. OBJECTIVE: This manuscript provides an overview of current approaches and advances in the application of big data and AI in various diseases of the optic nerve head. MATERIAL AND METHODS: A PubMed search was performed. Studies were searched for that answered clinical questions using big data approaches or classical machine learning methods in the analysis of multimodal imaging of the optic nerve head. RESULTS: Big data can help to answer clinical questions in common diseases such as glaucoma. The AI is applied for the segmentation of multimodal imaging of the optic nerve head as well as for the classification of diseases, such as glaucoma or optic disc edema on this imaging data. CONCLUSION: With the help of big data and AI, relationships can be recognized more easily and the diagnostics and course assessment of diseases of the optic nerve head can be facilitated or automated. A prerequisite for clinical application is a CE marking as a medical device in Europe and approval by the Food and Drug Administration in the USA. |
format | Online Article Text |
id | pubmed-8062109 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Medizin |
record_format | MEDLINE/PubMed |
spelling | pubmed-80621092021-04-23 Diagnostik von Erkrankungen des Sehnervenkopfes in Zeiten von künstlicher Intelligenz und Big Data Diener, R. Treder, M. Eter, N. Ophthalmologe Leitthema BACKGROUND: The use of artificial intelligence (AI) interesting for automated image segmentation, analysis and classification, among others and has already been described for various fields of ophthalmology. OBJECTIVE: This manuscript provides an overview of current approaches and advances in the application of big data and AI in various diseases of the optic nerve head. MATERIAL AND METHODS: A PubMed search was performed. Studies were searched for that answered clinical questions using big data approaches or classical machine learning methods in the analysis of multimodal imaging of the optic nerve head. RESULTS: Big data can help to answer clinical questions in common diseases such as glaucoma. The AI is applied for the segmentation of multimodal imaging of the optic nerve head as well as for the classification of diseases, such as glaucoma or optic disc edema on this imaging data. CONCLUSION: With the help of big data and AI, relationships can be recognized more easily and the diagnostics and course assessment of diseases of the optic nerve head can be facilitated or automated. A prerequisite for clinical application is a CE marking as a medical device in Europe and approval by the Food and Drug Administration in the USA. Springer Medizin 2021-04-22 2021 /pmc/articles/PMC8062109/ /pubmed/33890129 http://dx.doi.org/10.1007/s00347-021-01385-6 Text en © Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2021 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Leitthema Diener, R. Treder, M. Eter, N. Diagnostik von Erkrankungen des Sehnervenkopfes in Zeiten von künstlicher Intelligenz und Big Data |
title | Diagnostik von Erkrankungen des Sehnervenkopfes in Zeiten von künstlicher Intelligenz und Big Data |
title_full | Diagnostik von Erkrankungen des Sehnervenkopfes in Zeiten von künstlicher Intelligenz und Big Data |
title_fullStr | Diagnostik von Erkrankungen des Sehnervenkopfes in Zeiten von künstlicher Intelligenz und Big Data |
title_full_unstemmed | Diagnostik von Erkrankungen des Sehnervenkopfes in Zeiten von künstlicher Intelligenz und Big Data |
title_short | Diagnostik von Erkrankungen des Sehnervenkopfes in Zeiten von künstlicher Intelligenz und Big Data |
title_sort | diagnostik von erkrankungen des sehnervenkopfes in zeiten von künstlicher intelligenz und big data |
topic | Leitthema |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062109/ https://www.ncbi.nlm.nih.gov/pubmed/33890129 http://dx.doi.org/10.1007/s00347-021-01385-6 |
work_keys_str_mv | AT dienerr diagnostikvonerkrankungendessehnervenkopfesinzeitenvonkunstlicherintelligenzundbigdata AT trederm diagnostikvonerkrankungendessehnervenkopfesinzeitenvonkunstlicherintelligenzundbigdata AT etern diagnostikvonerkrankungendessehnervenkopfesinzeitenvonkunstlicherintelligenzundbigdata |