Cargando…

Diagnostik von Erkrankungen des Sehnervenkopfes in Zeiten von künstlicher Intelligenz und Big Data

BACKGROUND: The use of artificial intelligence (AI) interesting for automated image segmentation, analysis and classification, among others and has already been described for various fields of ophthalmology. OBJECTIVE: This manuscript provides an overview of current approaches and advances in the ap...

Descripción completa

Detalles Bibliográficos
Autores principales: Diener, R., Treder, M., Eter, N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Medizin 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062109/
https://www.ncbi.nlm.nih.gov/pubmed/33890129
http://dx.doi.org/10.1007/s00347-021-01385-6
_version_ 1783681700213030912
author Diener, R.
Treder, M.
Eter, N.
author_facet Diener, R.
Treder, M.
Eter, N.
author_sort Diener, R.
collection PubMed
description BACKGROUND: The use of artificial intelligence (AI) interesting for automated image segmentation, analysis and classification, among others and has already been described for various fields of ophthalmology. OBJECTIVE: This manuscript provides an overview of current approaches and advances in the application of big data and AI in various diseases of the optic nerve head. MATERIAL AND METHODS: A PubMed search was performed. Studies were searched for that answered clinical questions using big data approaches or classical machine learning methods in the analysis of multimodal imaging of the optic nerve head. RESULTS: Big data can help to answer clinical questions in common diseases such as glaucoma. The AI is applied for the segmentation of multimodal imaging of the optic nerve head as well as for the classification of diseases, such as glaucoma or optic disc edema on this imaging data. CONCLUSION: With the help of big data and AI, relationships can be recognized more easily and the diagnostics and course assessment of diseases of the optic nerve head can be facilitated or automated. A prerequisite for clinical application is a CE marking as a medical device in Europe and approval by the Food and Drug Administration in the USA.
format Online
Article
Text
id pubmed-8062109
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer Medizin
record_format MEDLINE/PubMed
spelling pubmed-80621092021-04-23 Diagnostik von Erkrankungen des Sehnervenkopfes in Zeiten von künstlicher Intelligenz und Big Data Diener, R. Treder, M. Eter, N. Ophthalmologe Leitthema BACKGROUND: The use of artificial intelligence (AI) interesting for automated image segmentation, analysis and classification, among others and has already been described for various fields of ophthalmology. OBJECTIVE: This manuscript provides an overview of current approaches and advances in the application of big data and AI in various diseases of the optic nerve head. MATERIAL AND METHODS: A PubMed search was performed. Studies were searched for that answered clinical questions using big data approaches or classical machine learning methods in the analysis of multimodal imaging of the optic nerve head. RESULTS: Big data can help to answer clinical questions in common diseases such as glaucoma. The AI is applied for the segmentation of multimodal imaging of the optic nerve head as well as for the classification of diseases, such as glaucoma or optic disc edema on this imaging data. CONCLUSION: With the help of big data and AI, relationships can be recognized more easily and the diagnostics and course assessment of diseases of the optic nerve head can be facilitated or automated. A prerequisite for clinical application is a CE marking as a medical device in Europe and approval by the Food and Drug Administration in the USA. Springer Medizin 2021-04-22 2021 /pmc/articles/PMC8062109/ /pubmed/33890129 http://dx.doi.org/10.1007/s00347-021-01385-6 Text en © Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2021 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
spellingShingle Leitthema
Diener, R.
Treder, M.
Eter, N.
Diagnostik von Erkrankungen des Sehnervenkopfes in Zeiten von künstlicher Intelligenz und Big Data
title Diagnostik von Erkrankungen des Sehnervenkopfes in Zeiten von künstlicher Intelligenz und Big Data
title_full Diagnostik von Erkrankungen des Sehnervenkopfes in Zeiten von künstlicher Intelligenz und Big Data
title_fullStr Diagnostik von Erkrankungen des Sehnervenkopfes in Zeiten von künstlicher Intelligenz und Big Data
title_full_unstemmed Diagnostik von Erkrankungen des Sehnervenkopfes in Zeiten von künstlicher Intelligenz und Big Data
title_short Diagnostik von Erkrankungen des Sehnervenkopfes in Zeiten von künstlicher Intelligenz und Big Data
title_sort diagnostik von erkrankungen des sehnervenkopfes in zeiten von künstlicher intelligenz und big data
topic Leitthema
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062109/
https://www.ncbi.nlm.nih.gov/pubmed/33890129
http://dx.doi.org/10.1007/s00347-021-01385-6
work_keys_str_mv AT dienerr diagnostikvonerkrankungendessehnervenkopfesinzeitenvonkunstlicherintelligenzundbigdata
AT trederm diagnostikvonerkrankungendessehnervenkopfesinzeitenvonkunstlicherintelligenzundbigdata
AT etern diagnostikvonerkrankungendessehnervenkopfesinzeitenvonkunstlicherintelligenzundbigdata