Cargando…
From SIR to SEAIRD: A novel data-driven modeling approach based on the Grey-box System Theory to predict the dynamics of COVID-19
Common compartmental modeling for COVID-19 is based on a priori knowledge and numerous assumptions. Additionally, they do not systematically incorporate asymptomatic cases. Our study aimed at providing a framework for data-driven approaches, by leveraging the strengths of the grey-box system theory...
Autores principales: | Pekpe, K. Midzodzi, Zitouni, Djamel, Gasso, Gilles, Dhifli, Wajdi, Guinhouya, Benjamin C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062253/ https://www.ncbi.nlm.nih.gov/pubmed/34764595 http://dx.doi.org/10.1007/s10489-021-02379-2 |
Ejemplares similares
-
A new SEAIRD pandemic prediction model with clinical and epidemiological data analysis on COVID-19 outbreak
por: Liu, Xian-Xian, et al.
Publicado: (2021) -
ProtNN: fast and accurate protein 3D-structure classification in structural and topological space
por: Dhifli, Wajdi, et al.
Publicado: (2016) -
Identification of early symptoms of endometriosis through the
analysis of online social networks: A social media study
por: Fruchart, Mathilde, et al.
Publicado: (2023) -
Latent network-based representations for large-scale gene expression data analysis
por: Dhifli, Wajdi, et al.
Publicado: (2019) -
Toward a grey box approach for cardiovascular physiome
por: Hwang, Minki, et al.
Publicado: (2019)