Cargando…
Predicting affective appraisals from facial expressions and physiology using machine learning
The present study explored the interrelations between a broad set of appraisal ratings and five physiological signals, including facial EMG, electrodermal activity, and heart rate variability, that were assessed in 157 participants watching 10 emotionally charged videos. A total of 134 features were...
Autores principales: | Israel, Laura S. F., Schönbrodt, Felix D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062398/ https://www.ncbi.nlm.nih.gov/pubmed/32761313 http://dx.doi.org/10.3758/s13428-020-01435-y |
Ejemplares similares
-
Facial Emotion Recognition Predicts Alexithymia Using Machine Learning
por: Farhoumandi, Nima, et al.
Publicado: (2021) -
Detecting deception using machine learning with facial expressions and pulse rate
por: Tsuchiya, Kento, et al.
Publicado: (2023) -
Machine Learning-Based Facial Beauty Prediction and Analysis of Frontal Facial Images Using Facial Landmarks and Traditional Image Descriptors
por: J. Iyer, Tharun, et al.
Publicado: (2021) -
Effects of reboxetine and citalopram on appraisal of infant facial expressions and attentional biases
por: Stein, Alan, et al.
Publicado: (2012) -
Self-Relevance Appraisal Influences Facial Reactions to Emotional Body Expressions
por: Grèzes, Julie, et al.
Publicado: (2013)