Cargando…
Support vector regression-based QSAR models for prediction of antioxidant activity of phenolic compounds
The Support vector regression (SVR) was used to investigate quantitative structure–activity relationships (QSAR) of 75 phenolic compounds with Trolox-equivalent antioxidant capacity (TEAC). Geometric structures were optimized at the EF level of the MOPAC software program. Using Pearson correlation c...
Autor principal: | Shi, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062522/ https://www.ncbi.nlm.nih.gov/pubmed/33888843 http://dx.doi.org/10.1038/s41598-021-88341-1 |
Ejemplares similares
-
Chemometric QSAR Modeling and In Silico Design of Antioxidant NO Donor Phenols
por: Mitra, Indrani, et al.
Publicado: (2011) -
QSAR study of phenolic compounds and their anti-DPPH radical activity by discriminant analysis
por: Lu, Ang, et al.
Publicado: (2022) -
High-Dimensional Descriptor Selection and Computational QSAR Modeling for Antitumor Activity of ARC-111 Analogues Based on Support Vector Regression (SVR)
por: Zhou, Wei, et al.
Publicado: (2012) -
Network-based piecewise linear regression for QSAR modelling
por: Cardoso-Silva, Jonathan, et al.
Publicado: (2019) -
Antioxidant Activity of Selected Phenolic Acids–Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features
por: Spiegel, Maciej, et al.
Publicado: (2020)