Cargando…
Glutathione-related genetic polymorphisms are associated with mercury retention and nephrotoxicity in gold-mining settings of a Colombian population
Mercury (Hg) vapor can produce kidney injury, where the proximal tubule region of the nephron is the main target of the Hg-induced oxidative stress. Hg is eliminated from the body as a glutathione conjugate. Thus, single nucleotide polymorphisms (SNPs) in glutathione-related genes might modulate the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062595/ https://www.ncbi.nlm.nih.gov/pubmed/33888803 http://dx.doi.org/10.1038/s41598-021-88137-3 |
_version_ | 1783681797607915520 |
---|---|
author | Medina Pérez, Olga Marcela Flórez-Vargas, Oscar Rincón Cruz, Giovanna Rondón González, Fernando Rocha Muñoz, Linda Sánchez Rodríguez, Luz Helena |
author_facet | Medina Pérez, Olga Marcela Flórez-Vargas, Oscar Rincón Cruz, Giovanna Rondón González, Fernando Rocha Muñoz, Linda Sánchez Rodríguez, Luz Helena |
author_sort | Medina Pérez, Olga Marcela |
collection | PubMed |
description | Mercury (Hg) vapor can produce kidney injury, where the proximal tubule region of the nephron is the main target of the Hg-induced oxidative stress. Hg is eliminated from the body as a glutathione conjugate. Thus, single nucleotide polymorphisms (SNPs) in glutathione-related genes might modulate the negative impact of this metal on the kidneys. Glutathione-related SNPs were tested for association with levels of Hg and renal function biomarkers between occupationally exposed (n = 160) and non-exposed subjects (n = 121). SNPs were genotyped by TaqMan assays in genomic DNA samples. Total mercury concentration was measured in blood, urine and hair samples. Regression analyses were performed to estimate the effects of SNPs on quantitative traits. Alleles GCLM rs41303970-T and GSTP1 rs4147581-C were significantly overrepresented in the exposed compared with the non-exposed group (P < 0.01). We found significant associations for GCLM rs41303970-T with higher urinary clearance rate of Hg (β = 0.062, P = 0.047), whereas GCLC rs1555903-C was associated with lower levels of estimated glomerular filtration rate in the non-exposed group (eGFR, β = − 3.22, P = 0.008) and beta-2-microglobulin in the exposed group (β-2MCG, β = − 19.32, P = 0.02). A SNP-SNP interaction analysis showed significant epistasis between GSTA1 rs3957356-C and GSS rs3761144-G with higher urinary levels of Hg in the exposed (β = 0.13, P = 0.04) but not in the non-exposed group. Our results suggest that SNPs in glutathione-related genes could modulate the pathogenesis of Hg nephrotoxicity in our study population by modulating glutathione concentrations in individuals occupationally exposed to this heavy metal. |
format | Online Article Text |
id | pubmed-8062595 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-80625952021-04-27 Glutathione-related genetic polymorphisms are associated with mercury retention and nephrotoxicity in gold-mining settings of a Colombian population Medina Pérez, Olga Marcela Flórez-Vargas, Oscar Rincón Cruz, Giovanna Rondón González, Fernando Rocha Muñoz, Linda Sánchez Rodríguez, Luz Helena Sci Rep Article Mercury (Hg) vapor can produce kidney injury, where the proximal tubule region of the nephron is the main target of the Hg-induced oxidative stress. Hg is eliminated from the body as a glutathione conjugate. Thus, single nucleotide polymorphisms (SNPs) in glutathione-related genes might modulate the negative impact of this metal on the kidneys. Glutathione-related SNPs were tested for association with levels of Hg and renal function biomarkers between occupationally exposed (n = 160) and non-exposed subjects (n = 121). SNPs were genotyped by TaqMan assays in genomic DNA samples. Total mercury concentration was measured in blood, urine and hair samples. Regression analyses were performed to estimate the effects of SNPs on quantitative traits. Alleles GCLM rs41303970-T and GSTP1 rs4147581-C were significantly overrepresented in the exposed compared with the non-exposed group (P < 0.01). We found significant associations for GCLM rs41303970-T with higher urinary clearance rate of Hg (β = 0.062, P = 0.047), whereas GCLC rs1555903-C was associated with lower levels of estimated glomerular filtration rate in the non-exposed group (eGFR, β = − 3.22, P = 0.008) and beta-2-microglobulin in the exposed group (β-2MCG, β = − 19.32, P = 0.02). A SNP-SNP interaction analysis showed significant epistasis between GSTA1 rs3957356-C and GSS rs3761144-G with higher urinary levels of Hg in the exposed (β = 0.13, P = 0.04) but not in the non-exposed group. Our results suggest that SNPs in glutathione-related genes could modulate the pathogenesis of Hg nephrotoxicity in our study population by modulating glutathione concentrations in individuals occupationally exposed to this heavy metal. Nature Publishing Group UK 2021-04-22 /pmc/articles/PMC8062595/ /pubmed/33888803 http://dx.doi.org/10.1038/s41598-021-88137-3 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Medina Pérez, Olga Marcela Flórez-Vargas, Oscar Rincón Cruz, Giovanna Rondón González, Fernando Rocha Muñoz, Linda Sánchez Rodríguez, Luz Helena Glutathione-related genetic polymorphisms are associated with mercury retention and nephrotoxicity in gold-mining settings of a Colombian population |
title | Glutathione-related genetic polymorphisms are associated with mercury retention and nephrotoxicity in gold-mining settings of a Colombian population |
title_full | Glutathione-related genetic polymorphisms are associated with mercury retention and nephrotoxicity in gold-mining settings of a Colombian population |
title_fullStr | Glutathione-related genetic polymorphisms are associated with mercury retention and nephrotoxicity in gold-mining settings of a Colombian population |
title_full_unstemmed | Glutathione-related genetic polymorphisms are associated with mercury retention and nephrotoxicity in gold-mining settings of a Colombian population |
title_short | Glutathione-related genetic polymorphisms are associated with mercury retention and nephrotoxicity in gold-mining settings of a Colombian population |
title_sort | glutathione-related genetic polymorphisms are associated with mercury retention and nephrotoxicity in gold-mining settings of a colombian population |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062595/ https://www.ncbi.nlm.nih.gov/pubmed/33888803 http://dx.doi.org/10.1038/s41598-021-88137-3 |
work_keys_str_mv | AT medinaperezolgamarcela glutathionerelatedgeneticpolymorphismsareassociatedwithmercuryretentionandnephrotoxicityingoldminingsettingsofacolombianpopulation AT florezvargasoscar glutathionerelatedgeneticpolymorphismsareassociatedwithmercuryretentionandnephrotoxicityingoldminingsettingsofacolombianpopulation AT rinconcruzgiovanna glutathionerelatedgeneticpolymorphismsareassociatedwithmercuryretentionandnephrotoxicityingoldminingsettingsofacolombianpopulation AT rondongonzalezfernando glutathionerelatedgeneticpolymorphismsareassociatedwithmercuryretentionandnephrotoxicityingoldminingsettingsofacolombianpopulation AT rochamunozlinda glutathionerelatedgeneticpolymorphismsareassociatedwithmercuryretentionandnephrotoxicityingoldminingsettingsofacolombianpopulation AT sanchezrodriguezluzhelena glutathionerelatedgeneticpolymorphismsareassociatedwithmercuryretentionandnephrotoxicityingoldminingsettingsofacolombianpopulation |