Cargando…

A hybrid data envelopment analysis—artificial neural network prediction model for COVID-19 severity in transplant recipients

In an overwhelming demand scenario, such as the SARS-CoV-2 pandemic, pressure over health systems may outburst their predicted capacity to deal with such extreme situations. Therefore, in order to successfully face a health emergency, scientific evidence and validated models are needed to provide re...

Descripción completa

Detalles Bibliográficos
Autores principales: Revuelta, Ignacio, Santos-Arteaga, Francisco J., Montagud-Marrahi, Enrique, Ventura-Aguiar, Pedro, Di Caprio, Debora, Cofan, Frederic, Cucchiari, David, Torregrosa, Vicens, Piñeiro, Gaston Julio, Esforzado, Nuria, Bodro, Marta, Ugalde-Altamirano, Jessica, Moreno, Asuncion, Campistol, Josep M., Alcaraz, Antonio, Bayès, Beatriu, Poch, Esteban, Oppenheimer, Federico, Diekmann, Fritz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062617/
https://www.ncbi.nlm.nih.gov/pubmed/33907345
http://dx.doi.org/10.1007/s10462-021-10008-0
_version_ 1783681801798025216
author Revuelta, Ignacio
Santos-Arteaga, Francisco J.
Montagud-Marrahi, Enrique
Ventura-Aguiar, Pedro
Di Caprio, Debora
Cofan, Frederic
Cucchiari, David
Torregrosa, Vicens
Piñeiro, Gaston Julio
Esforzado, Nuria
Bodro, Marta
Ugalde-Altamirano, Jessica
Moreno, Asuncion
Campistol, Josep M.
Alcaraz, Antonio
Bayès, Beatriu
Poch, Esteban
Oppenheimer, Federico
Diekmann, Fritz
author_facet Revuelta, Ignacio
Santos-Arteaga, Francisco J.
Montagud-Marrahi, Enrique
Ventura-Aguiar, Pedro
Di Caprio, Debora
Cofan, Frederic
Cucchiari, David
Torregrosa, Vicens
Piñeiro, Gaston Julio
Esforzado, Nuria
Bodro, Marta
Ugalde-Altamirano, Jessica
Moreno, Asuncion
Campistol, Josep M.
Alcaraz, Antonio
Bayès, Beatriu
Poch, Esteban
Oppenheimer, Federico
Diekmann, Fritz
author_sort Revuelta, Ignacio
collection PubMed
description In an overwhelming demand scenario, such as the SARS-CoV-2 pandemic, pressure over health systems may outburst their predicted capacity to deal with such extreme situations. Therefore, in order to successfully face a health emergency, scientific evidence and validated models are needed to provide real-time information that could be applied by any health center, especially for high-risk populations, such as transplant recipients. We have developed a hybrid prediction model whose accuracy relative to several alternative configurations has been validated through a battery of clustering techniques. Using hospital admission data from a cohort of hospitalized transplant patients, our hybrid Data Envelopment Analysis (DEA)—Artificial Neural Network (ANN) model extrapolates the progression towards severe COVID-19 disease with an accuracy of 96.3%, outperforming any competing model, such as logistic regression (65.5%) and random forest (44.8%). In this regard, DEA-ANN allows us to categorize the evolution of patients through the values of the analyses performed at hospital admission. Our prediction model may help guiding COVID-19 management through the identification of key predictors that permit a sustainable management of resources in a patient-centered model. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10462-021-10008-0.
format Online
Article
Text
id pubmed-8062617
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer Netherlands
record_format MEDLINE/PubMed
spelling pubmed-80626172021-04-23 A hybrid data envelopment analysis—artificial neural network prediction model for COVID-19 severity in transplant recipients Revuelta, Ignacio Santos-Arteaga, Francisco J. Montagud-Marrahi, Enrique Ventura-Aguiar, Pedro Di Caprio, Debora Cofan, Frederic Cucchiari, David Torregrosa, Vicens Piñeiro, Gaston Julio Esforzado, Nuria Bodro, Marta Ugalde-Altamirano, Jessica Moreno, Asuncion Campistol, Josep M. Alcaraz, Antonio Bayès, Beatriu Poch, Esteban Oppenheimer, Federico Diekmann, Fritz Artif Intell Rev Article In an overwhelming demand scenario, such as the SARS-CoV-2 pandemic, pressure over health systems may outburst their predicted capacity to deal with such extreme situations. Therefore, in order to successfully face a health emergency, scientific evidence and validated models are needed to provide real-time information that could be applied by any health center, especially for high-risk populations, such as transplant recipients. We have developed a hybrid prediction model whose accuracy relative to several alternative configurations has been validated through a battery of clustering techniques. Using hospital admission data from a cohort of hospitalized transplant patients, our hybrid Data Envelopment Analysis (DEA)—Artificial Neural Network (ANN) model extrapolates the progression towards severe COVID-19 disease with an accuracy of 96.3%, outperforming any competing model, such as logistic regression (65.5%) and random forest (44.8%). In this regard, DEA-ANN allows us to categorize the evolution of patients through the values of the analyses performed at hospital admission. Our prediction model may help guiding COVID-19 management through the identification of key predictors that permit a sustainable management of resources in a patient-centered model. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10462-021-10008-0. Springer Netherlands 2021-04-23 2021 /pmc/articles/PMC8062617/ /pubmed/33907345 http://dx.doi.org/10.1007/s10462-021-10008-0 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Revuelta, Ignacio
Santos-Arteaga, Francisco J.
Montagud-Marrahi, Enrique
Ventura-Aguiar, Pedro
Di Caprio, Debora
Cofan, Frederic
Cucchiari, David
Torregrosa, Vicens
Piñeiro, Gaston Julio
Esforzado, Nuria
Bodro, Marta
Ugalde-Altamirano, Jessica
Moreno, Asuncion
Campistol, Josep M.
Alcaraz, Antonio
Bayès, Beatriu
Poch, Esteban
Oppenheimer, Federico
Diekmann, Fritz
A hybrid data envelopment analysis—artificial neural network prediction model for COVID-19 severity in transplant recipients
title A hybrid data envelopment analysis—artificial neural network prediction model for COVID-19 severity in transplant recipients
title_full A hybrid data envelopment analysis—artificial neural network prediction model for COVID-19 severity in transplant recipients
title_fullStr A hybrid data envelopment analysis—artificial neural network prediction model for COVID-19 severity in transplant recipients
title_full_unstemmed A hybrid data envelopment analysis—artificial neural network prediction model for COVID-19 severity in transplant recipients
title_short A hybrid data envelopment analysis—artificial neural network prediction model for COVID-19 severity in transplant recipients
title_sort hybrid data envelopment analysis—artificial neural network prediction model for covid-19 severity in transplant recipients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062617/
https://www.ncbi.nlm.nih.gov/pubmed/33907345
http://dx.doi.org/10.1007/s10462-021-10008-0
work_keys_str_mv AT revueltaignacio ahybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT santosarteagafranciscoj ahybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT montagudmarrahienrique ahybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT venturaaguiarpedro ahybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT dicapriodebora ahybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT cofanfrederic ahybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT cucchiaridavid ahybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT torregrosavicens ahybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT pineirogastonjulio ahybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT esforzadonuria ahybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT bodromarta ahybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT ugaldealtamiranojessica ahybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT morenoasuncion ahybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT campistoljosepm ahybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT alcarazantonio ahybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT bayesbeatriu ahybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT pochesteban ahybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT oppenheimerfederico ahybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT diekmannfritz ahybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT revueltaignacio hybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT santosarteagafranciscoj hybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT montagudmarrahienrique hybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT venturaaguiarpedro hybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT dicapriodebora hybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT cofanfrederic hybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT cucchiaridavid hybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT torregrosavicens hybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT pineirogastonjulio hybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT esforzadonuria hybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT bodromarta hybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT ugaldealtamiranojessica hybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT morenoasuncion hybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT campistoljosepm hybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT alcarazantonio hybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT bayesbeatriu hybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT pochesteban hybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT oppenheimerfederico hybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients
AT diekmannfritz hybriddataenvelopmentanalysisartificialneuralnetworkpredictionmodelforcovid19severityintransplantrecipients