Cargando…
Deep feature loss to denoise OCT images using deep neural networks
Significance: Speckle noise is an inherent limitation of optical coherence tomography (OCT) images that makes clinical interpretation challenging. The recent emergence of deep learning could offer a reliable method to reduce noise in OCT images. Aim: We sought to investigate the use of deep features...
Autores principales: | Mehdizadeh, Maryam, MacNish, Cara, Xiao, Di, Alonso-Caneiro, David, Kugelman, Jason, Bennamoun, Mohammed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062795/ https://www.ncbi.nlm.nih.gov/pubmed/33893726 http://dx.doi.org/10.1117/1.JBO.26.4.046003 |
Ejemplares similares
-
Automatic choroidal segmentation in OCT images using supervised deep learning methods
por: Kugelman, Jason, et al.
Publicado: (2019) -
A comparison of deep learning U-Net architectures for posterior segment OCT retinal layer segmentation
por: Kugelman, Jason, et al.
Publicado: (2022) -
Live 4D-OCT denoising with self-supervised deep learning
por: Nienhaus, Jonas, et al.
Publicado: (2023) -
High-contrast scleroconjunctival microvasculature via deep learning denoising
por: Kadomoto, Shin, et al.
Publicado: (2020) -
Imaging in focus: An introduction to denoising bioimages in the era of deep learning
por: Laine, Romain F., et al.
Publicado: (2021)