Cargando…
Embodied Cooperation to Promote Forgiving Interactions With Autonomous Machines
During every waking moment, we must engage with our environments, the people around us, the tools we use, and even our own bodies to perform actions and achieve our intentions. There is a spectrum of control that we have over our surroundings that spans the extremes from full to negligible. When the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062797/ https://www.ncbi.nlm.nih.gov/pubmed/33897401 http://dx.doi.org/10.3389/fnbot.2021.661603 |
Sumario: | During every waking moment, we must engage with our environments, the people around us, the tools we use, and even our own bodies to perform actions and achieve our intentions. There is a spectrum of control that we have over our surroundings that spans the extremes from full to negligible. When the outcomes of our actions do not align with our goals, we have a tremendous capacity to displace blame and frustration on external factors while forgiving ourselves. This is especially true when we cooperate with machines; they are rarely afforded the level of forgiveness we provide our bodies and often bear much of our blame. Yet, our brain readily engages with autonomous processes in controlling our bodies to coordinate complex patterns of muscle contractions, make postural adjustments, adapt to external perturbations, among many others. This acceptance of biological autonomy may provide avenues to promote more forgiving human-machine partnerships. In this perspectives paper, we argue that striving for machine embodiment is a pathway to achieving effective and forgiving human-machine relationships. We discuss the mechanisms that help us identify ourselves and our bodies as separate from our environments and we describe their roles in achieving embodied cooperation. Using a representative selection of examples in neurally interfaced prosthetic limbs and intelligent mechatronics, we describe techniques to engage these same mechanisms when designing autonomous systems and their potential bidirectional interfaces. |
---|