Cargando…
Machine Learning for Predicting Mycotoxin Occurrence in Maize
Meteorological conditions are the main driving variables for mycotoxin-producing fungi and the resulting contamination in maize grain, but the cropping system used can mitigate this weather impact considerably. Several researchers have investigated cropping operations’ role in mycotoxin contaminatio...
Autores principales: | Camardo Leggieri, Marco, Mazzoni, Marco, Battilani, Paola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062859/ https://www.ncbi.nlm.nih.gov/pubmed/33897675 http://dx.doi.org/10.3389/fmicb.2021.661132 |
Ejemplares similares
-
Aspergillus flavus and Fusarium verticillioides Interaction: Modeling the Impact on Mycotoxin Production
por: Camardo Leggieri, Marco, et al.
Publicado: (2019) -
Modelling Fungal Growth, Mycotoxin Production and Release in Grana Cheese
por: Camardo Leggieri, Marco, et al.
Publicado: (2020) -
Impact of Fungi Co-occurrence on Mycotoxin Contamination in Maize During the Growing Season
por: Giorni, Paola, et al.
Publicado: (2019) -
OTA-Grapes: A Mechanistic Model to Predict Ochratoxin A Risk in Grapes, a Step beyond the Systems Approach
por: Battilani, Paola, et al.
Publicado: (2015) -
Predicted Aflatoxin B(1) Increase in Europe Due to Climate Change: Actions and Reactions at Global Level
por: Leggieri, Marco Camardo, et al.
Publicado: (2021)