Cargando…
Aerosol-jet-printed, conformable microfluidic force sensors
Force sensors that are thin, low-cost, flexible, and compatible with commercial microelectronic chips are of great interest for use in biomedical sensing, precision surgery, and robotics. By leveraging a combination of microfluidics and capacitive sensing, we develop a thin, flexible force sensor th...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8063179/ https://www.ncbi.nlm.nih.gov/pubmed/33928263 http://dx.doi.org/10.1016/j.xcrp.2021.100386 |
Sumario: | Force sensors that are thin, low-cost, flexible, and compatible with commercial microelectronic chips are of great interest for use in biomedical sensing, precision surgery, and robotics. By leveraging a combination of microfluidics and capacitive sensing, we develop a thin, flexible force sensor that is conformable and robust. The sensor consists of a partially filled microfluidic channel made from a deformable material, with the channel overlaying a series of interdigitated electrodes coated with a thin, insulating polymer layer. When a force is applied to the microfluidic channel reservoir, the fluid is displaced along the channel over the electrodes, thus inducing a capacitance change proportional to the applied force. The microfluidic molds themselves are made of low-cost sacrificial materials deposited via aerosol-jet printing, which is also used to print the electrode layer. We envisage a large range of industrial and biomedical applications for this force sensor. |
---|