Cargando…
High-throughput screening of multifunctional nanocoatings based on combinations of polyphenols and catecholamines
Biomimetic surface coatings based on plant polyphenols and catecholamines have been used broadly in a variety of applications. However, the lack of a rational cost-effective platform for screening these coatings and their properties limits the true potential of these functional materials to be unlea...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8063910/ https://www.ncbi.nlm.nih.gov/pubmed/33912825 http://dx.doi.org/10.1016/j.mtbio.2021.100108 |
_version_ | 1783682034292490240 |
---|---|
author | Behboodi-Sadabad, F. Li, S. Lei, W. Liu, Y. Sommer, T. Friederich, P. Sobek, C. Messersmith, P.B. Levkin, P.A. |
author_facet | Behboodi-Sadabad, F. Li, S. Lei, W. Liu, Y. Sommer, T. Friederich, P. Sobek, C. Messersmith, P.B. Levkin, P.A. |
author_sort | Behboodi-Sadabad, F. |
collection | PubMed |
description | Biomimetic surface coatings based on plant polyphenols and catecholamines have been used broadly in a variety of applications. However, the lack of a rational cost-effective platform for screening these coatings and their properties limits the true potential of these functional materials to be unleashed. Here, we investigated the oxidation behavior and coating formation ability of a library consisting of 45 phenolic compounds and catecholamines. UV–vis spectroscopy demonstrated significant acceleration of oxidation and polymerization under UV irradiation. We discovered that several binary mixtures resulted in non-additive behavior (synergistic or antagonistic effect) yielding much thicker or thinner coatings than individual compounds measured by ellipsometry. To investigate the properties of coatings derived from new combinations, we used a miniaturized high-throughput strategy to screen 2,532 spots coated with single, binary, and ternary combinations of coating precursors in one run. We evaluated the use of machine learning models to learn the relation between the chemical structure of the precursors and the thickness of the nanocoatings. Formation and stability of nanocoatings were investigated in a high-throughput manner via discontinuous dewetting. 30 stable combinations (hits) were used to tune the surface wettability and to form water droplet microarray and spot size gradients of water droplets on the coated surface. No toxicity was observed against eukaryotic HeLa cells and Pseudomonas aeruginosa (strain PA30) bacteria after 24 h incubation at 37 °C. The strategy introduced here for high-throughput screening of nanocoatings derived from combinations of coating precursors enables the discovery of new functional materials for various applications in science and technology in a cost-effective miniaturized manner. |
format | Online Article Text |
id | pubmed-8063910 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-80639102021-04-27 High-throughput screening of multifunctional nanocoatings based on combinations of polyphenols and catecholamines Behboodi-Sadabad, F. Li, S. Lei, W. Liu, Y. Sommer, T. Friederich, P. Sobek, C. Messersmith, P.B. Levkin, P.A. Mater Today Bio Full Length Article Biomimetic surface coatings based on plant polyphenols and catecholamines have been used broadly in a variety of applications. However, the lack of a rational cost-effective platform for screening these coatings and their properties limits the true potential of these functional materials to be unleashed. Here, we investigated the oxidation behavior and coating formation ability of a library consisting of 45 phenolic compounds and catecholamines. UV–vis spectroscopy demonstrated significant acceleration of oxidation and polymerization under UV irradiation. We discovered that several binary mixtures resulted in non-additive behavior (synergistic or antagonistic effect) yielding much thicker or thinner coatings than individual compounds measured by ellipsometry. To investigate the properties of coatings derived from new combinations, we used a miniaturized high-throughput strategy to screen 2,532 spots coated with single, binary, and ternary combinations of coating precursors in one run. We evaluated the use of machine learning models to learn the relation between the chemical structure of the precursors and the thickness of the nanocoatings. Formation and stability of nanocoatings were investigated in a high-throughput manner via discontinuous dewetting. 30 stable combinations (hits) were used to tune the surface wettability and to form water droplet microarray and spot size gradients of water droplets on the coated surface. No toxicity was observed against eukaryotic HeLa cells and Pseudomonas aeruginosa (strain PA30) bacteria after 24 h incubation at 37 °C. The strategy introduced here for high-throughput screening of nanocoatings derived from combinations of coating precursors enables the discovery of new functional materials for various applications in science and technology in a cost-effective miniaturized manner. Elsevier 2021-03-10 /pmc/articles/PMC8063910/ /pubmed/33912825 http://dx.doi.org/10.1016/j.mtbio.2021.100108 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Full Length Article Behboodi-Sadabad, F. Li, S. Lei, W. Liu, Y. Sommer, T. Friederich, P. Sobek, C. Messersmith, P.B. Levkin, P.A. High-throughput screening of multifunctional nanocoatings based on combinations of polyphenols and catecholamines |
title | High-throughput screening of multifunctional nanocoatings based on combinations of polyphenols and catecholamines |
title_full | High-throughput screening of multifunctional nanocoatings based on combinations of polyphenols and catecholamines |
title_fullStr | High-throughput screening of multifunctional nanocoatings based on combinations of polyphenols and catecholamines |
title_full_unstemmed | High-throughput screening of multifunctional nanocoatings based on combinations of polyphenols and catecholamines |
title_short | High-throughput screening of multifunctional nanocoatings based on combinations of polyphenols and catecholamines |
title_sort | high-throughput screening of multifunctional nanocoatings based on combinations of polyphenols and catecholamines |
topic | Full Length Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8063910/ https://www.ncbi.nlm.nih.gov/pubmed/33912825 http://dx.doi.org/10.1016/j.mtbio.2021.100108 |
work_keys_str_mv | AT behboodisadabadf highthroughputscreeningofmultifunctionalnanocoatingsbasedoncombinationsofpolyphenolsandcatecholamines AT lis highthroughputscreeningofmultifunctionalnanocoatingsbasedoncombinationsofpolyphenolsandcatecholamines AT leiw highthroughputscreeningofmultifunctionalnanocoatingsbasedoncombinationsofpolyphenolsandcatecholamines AT liuy highthroughputscreeningofmultifunctionalnanocoatingsbasedoncombinationsofpolyphenolsandcatecholamines AT sommert highthroughputscreeningofmultifunctionalnanocoatingsbasedoncombinationsofpolyphenolsandcatecholamines AT friederichp highthroughputscreeningofmultifunctionalnanocoatingsbasedoncombinationsofpolyphenolsandcatecholamines AT sobekc highthroughputscreeningofmultifunctionalnanocoatingsbasedoncombinationsofpolyphenolsandcatecholamines AT messersmithpb highthroughputscreeningofmultifunctionalnanocoatingsbasedoncombinationsofpolyphenolsandcatecholamines AT levkinpa highthroughputscreeningofmultifunctionalnanocoatingsbasedoncombinationsofpolyphenolsandcatecholamines |