Cargando…
An Overcomplete Approach to Fitting Drift-Diffusion Decision Models to Trial-By-Trial Data
Drift-diffusion models or DDMs are becoming a standard in the field of computational neuroscience. They extend models from signal detection theory by proposing a simple mechanistic explanation for the observed relationship between decision outcomes and reaction times (RT). In brief, they assume that...
Autores principales: | Feltgen, Q., Daunizeau, J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8064018/ https://www.ncbi.nlm.nih.gov/pubmed/33898982 http://dx.doi.org/10.3389/frai.2021.531316 |
Ejemplares similares
-
A novel technique for detecting sudden concept drift in healthcare data using multi-linear artificial intelligence techniques
por: M. S., Abdul Razak, et al.
Publicado: (2022) -
A survey on detecting healthcare concept drift in AI/ML models from a finance perspective
por: M. S., Abdul Razak, et al.
Publicado: (2023) -
Targeted Screening for Alzheimer's Disease Clinical Trials Using Data-Driven Disease Progression Models
por: Oxtoby, Neil P., et al.
Publicado: (2022) -
Bilinear pooling in video-QA: empirical challenges and motivational drift from neurological parallels
por: Winterbottom, Thomas, et al.
Publicado: (2022) -
Iterative multilinear optimization for planar model fitting under geometric constraints
por: Azorin-Lopez, Jorge, et al.
Publicado: (2021)