Cargando…
Interfacial Interactions during Demolding in Nanoimprint Lithography
Nanoimprint lithography (NIL) is a useful technique for the fabrication of nano/micro-structured materials. This article reviews NIL in the field of demolding processes and is divided into four parts. The first part introduces the NIL technologies for pattern replication with polymer resists (e.g.,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8064091/ https://www.ncbi.nlm.nih.gov/pubmed/33805114 http://dx.doi.org/10.3390/mi12040349 |
Sumario: | Nanoimprint lithography (NIL) is a useful technique for the fabrication of nano/micro-structured materials. This article reviews NIL in the field of demolding processes and is divided into four parts. The first part introduces the NIL technologies for pattern replication with polymer resists (e.g., thermal and UV-NIL). The second part reviews the process simulation during resist filling and demolding. The third and fourth parts discuss in detail the difficulties in demolding, particularly interfacial forces between mold (template) and resist, during NIL which limit its capability for practical commercial applications. The origins of large demolding forces (adhesion and friction forces), such as differences in the thermal expansion coefficients (CTEs) between the template and the imprinted resist, or volumetric shrinkage of the UV-curable polymer during curing, are also illustrated accordingly. The plausible solutions for easing interfacial interactions and optimizing demolding procedures, including exploring new resist materials, employing imprint mold surface modifications (e.g., ALD-assisted conformal layer covering imprint mold), and finetuning NIL process conditions, are presented. These approaches effectively reduce the interfacial demolding forces and thus lead to a lower defect rate of pattern transfer. The objective of this review is to provide insights to alleviate difficulties in demolding and to meet the stringent requirements regarding defect control for industrial manufacturing while at the same time maximizing the throughput of the nanoimprint technique. |
---|