Cargando…
Expression profiles and potential functions of long noncoding RNAs and mRNAs in autoimmune pulmonary alveolar proteinosis patients
Autoimmune pulmonary alveolar proteinosis (APAP) is a rare lung disease that may be associated with surfactant overaccumulation. To assess the function of long noncoding RNAs (lncRNAs) in APAP, we performed microarray analyses to identify differentially expressed (DE) lncRNAs and mRNAs between perip...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8064141/ https://www.ncbi.nlm.nih.gov/pubmed/33820876 http://dx.doi.org/10.18632/aging.202818 |
Sumario: | Autoimmune pulmonary alveolar proteinosis (APAP) is a rare lung disease that may be associated with surfactant overaccumulation. To assess the function of long noncoding RNAs (lncRNAs) in APAP, we performed microarray analyses to identify differentially expressed (DE) lncRNAs and mRNAs between peripheral blood samples from five APAP patients and five healthy volunteers. In total, 12459 DE lncRNAs and 9331 DE mRNAs were identified in APAP patient samples. A qRT-PCR validation of 20 DE lncRNAs and 20 mRNAs indicated that 12 DE lncRNAs may be involved in the pathogenesis of APAP. Coding and noncoding co-expression (CNC) and competing endogenous RNA (ceRNA) regulatory networks were constructed with these 12 DE lncRNAs. Gene Ontology analysis of the downregulated mRNAs and the CNC network revealed that “ubiquitin-like protein transferase activity” was suppressed in APAP patient samples. Kyoto Encyclopedia of Genes and Genomes analysis demonstrated that the “MAPK signaling pathway” was enriched in the ceRNA network. Gene Ontology analysis also indicated that mRNAs involved in many transmembrane ion transport processes were upregulated in APAP patients. The DE lncRNAs and mRNAs discovered in this study have elucidated the pathogenesis of APAP, and the CNC and ceRNA networks have provided novel insights for future functional research. |
---|