Cargando…

miR-20b and miR-125a promote tumorigenesis in radioresistant esophageal carcinoma cells

Radiation therapy is an effective method in the management of esophageal cancer. MicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. However, the roles of specific miRNAs in radioresistant esophageal cancer remain to be investigated. In present study, the relative expre...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Didi, Su, Huafang, Li, Yunhao, Wu, Xinyi, Li, Yifei, Wei, Chaoyi, Shi, Deli, Gao, Ya, Zhou, Qingyu, Wang, Qiongqiong, Jin, Xiance, Xie, Congying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8064182/
https://www.ncbi.nlm.nih.gov/pubmed/33714953
http://dx.doi.org/10.18632/aging.202690
Descripción
Sumario:Radiation therapy is an effective method in the management of esophageal cancer. MicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. However, the roles of specific miRNAs in radioresistant esophageal cancer remain to be investigated. In present study, the relative expression level of miR-20b-5p and miR-125a-5p were evaluated by quantitative Real-time polymerase chain reaction. Cell counting Kit-8 assay, wound-healing assay, transwell assay were used to assess cell proliferation, cell migration and cell invasion. TUNEL and Annexin V-FITC assays were applied to evaluate cell apoptosis. Dual-luciferase reporter gene assay was conducted to identify direct targets of miRNAs. The protein expression level was assessed by Western blot. The results indicated that miR-20b-5p was increased in radioresistant KYSE-150R cells compared with KYSE-150 cells, whereas miR-125a-5p was downregulated. MiR-20b-5p upregulation promoted cell proliferation, migration, invasion, and the EMT process, and decreased apoptosis by negatively regulating PTEN. MiR-125a-5p inhibited cell proliferation, migration, invasion, the EMT process and it induced apoptosis by negatively regulating IL6R. These data indicate that miR-20b-5p and miR-125a-5p promote tumorigenesis in radioresistant KYSE-150R cells and have the potential to be used as novel therapeutic targets for the treatment of esophageal cancer.