Cargando…
Hsa_circ_0053063 inhibits breast cancer cell proliferation via hsa_circ_0053063/hsa-miR-330-3p/PDCD4 axis
Breast cancer (BC) is one of the most common malignancies and its mortality is the highest among females. Circular RNAs (circRNAs), a novel group of non-coding RNAs, play an important regulatory role in angiogenesis and cancer progression. Hsa_circ_0053063 is a circRNA generated from several exons o...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8064214/ https://www.ncbi.nlm.nih.gov/pubmed/33744861 http://dx.doi.org/10.18632/aging.202707 |
Sumario: | Breast cancer (BC) is one of the most common malignancies and its mortality is the highest among females. Circular RNAs (circRNAs), a novel group of non-coding RNAs, play an important regulatory role in angiogenesis and cancer progression. Hsa_circ_0053063 is a circRNA generated from several exons of HADHA. The potential role of hsa_circ_0053063 in BC remains unknown and needs to be explored. Hsa_circ_0053063 was mainly located in the cytoplasm and activated in BC tissues and cell lines. The binding position between hsa_circ_0053063 and miR-330-3p was confirmed by luciferase reporter assay. Moreover, hsa_circ_0053063 inhibited cell viability, proliferation, and progression of BC through the negative regulation of miR-330-3p. Programmed cell death 4 (PDCD4) is a direct target of miR-330-3p. Besides, the over-expression of miR-330-3p promoted cell progression by directly targeting and regulating PDCD4. Mechanistically, hsa_circ_0053063 activated PDCD4 by targeting miR-330-3p to inhibit BC progression. In conclusion, hsa_circ_0053063 inhibits breast cancer cell proliferation via hsa_circ_0053063/hsa-miR-330-3p/PDCD4 axis, which may provide a new therapeutic target for BC patients. |
---|