Cargando…

Extenuating role of lycopene against 254-nm UV-C radiation-mediated damages in Allium cepa L. roots

UV-C exposure has become a crucial risk for living organisms due to its widespread use in sterilization. In this study, the mitigating potential of lycopene was investigated against UV-C-mediated toxicity in Allium cepa L. roots. Allium bulbs were separated into six groups which treated with tap wat...

Descripción completa

Detalles Bibliográficos
Autores principales: Çavuşoğlu, Dilek, Kalefetoğlu Macar, Tuğçe, Macar, Oksal, Yalçın, Emine, Çavuşoğlu, Kültiğin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8064420/
https://www.ncbi.nlm.nih.gov/pubmed/33893579
http://dx.doi.org/10.1007/s11356-021-14047-6
Descripción
Sumario:UV-C exposure has become a crucial risk for living organisms due to its widespread use in sterilization. In this study, the mitigating potential of lycopene was investigated against UV-C-mediated toxicity in Allium cepa L. roots. Allium bulbs were separated into six groups which treated with tap water, 215 mg/L lycopene, 430 mg/L lycopene, 254-nm UV radiation, 215 mg/L lycopene + 254-nm UV radiation, and 430 mg/L lycopene + 254-nm UV radiation. Germination percentage, root length, weight gain, mitotic index, micronucleus frequency, and other chromosomal aberrations as well as meristematic cell damages were investigated in all groups. Malondialdehyde level and the activities of superoxide dismutase and catalase enzymes were also analyzed to understand the severity of oxidative stress. UV-C radiation was revealed to negatively affect all parameters investigated, while the mitigating activities of lycopene against UV-C-mediated toxicity were dose-dependent. Therefore, the study evidently demonstrated the promising potential of lycopene in the protection against the detrimental effects of UV-C exposure in A. cepa.