Cargando…
Predicting mortality and hospitalization in heart failure using machine learning: A systematic literature review
OBJECTIVE: The partnership between humans and machines can enhance clinical decisions accuracy, leading to improved patient outcomes. Despite this, the application of machine learning techniques in the healthcare sector, particularly in guiding heart failure patient management, remains unpopular. Th...
Autores principales: | Mpanya, Dineo, Celik, Turgay, Klug, Eric, Ntsinjana, Hopewell |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065274/ https://www.ncbi.nlm.nih.gov/pubmed/33912652 http://dx.doi.org/10.1016/j.ijcha.2021.100773 |
Ejemplares similares
-
Predicting in-hospital all-cause mortality in heart failure using machine learning
por: Mpanya, Dineo, et al.
Publicado: (2023) -
The prevalence of depression, stress and anxiety symptoms in patients with chronic heart failure
por: Tsabedze, Nqoba, et al.
Publicado: (2021) -
In-Hospital Mortality Outcomes of ST-Segment Elevation Myocardial Infarction: A Cross-Sectional Study from a Tertiary Academic Hospital in Johannesburg, South Africa
por: Ndaba, Lindokuhle, et al.
Publicado: (2023) -
New Biomarkers and Their Potential Role in Heart Failure Treatment Optimisation—An African Perspective
por: Badianyama, Marheb, et al.
Publicado: (2022) -
HbA1c control in type 2 diabetes mellitus patients with coronary artery disease: a retrospective study in a tertiary hospital in South Africa
por: Mhlaba, Lona, et al.
Publicado: (2023)