Cargando…
The functional connectome in posttraumatic stress disorder
BACKGROUND: Previous fMRI studies of posttraumatic stress disorder (PTSD) have investigated region-specific alterations in intrinsic connectivity but connectome-wide changes in connectivity are yet to be characterized. Understanding the neurobiology of this is important to develop novel treatment in...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065342/ https://www.ncbi.nlm.nih.gov/pubmed/33912628 http://dx.doi.org/10.1016/j.ynstr.2021.100321 |
Sumario: | BACKGROUND: Previous fMRI studies of posttraumatic stress disorder (PTSD) have investigated region-specific alterations in intrinsic connectivity but connectome-wide changes in connectivity are yet to be characterized. Understanding the neurobiology of this is important to develop novel treatment interventions for PTSD. This study aims to identify connectome-wide disruptions in PTSD to provide a more comprehensive analysis of nseural networks in this disorder. METHODS: A functional MRI scan was completed by 138 individuals (67 PTSD and 71 non-trauma-exposed healthy controls [HC]). For every individual, inter-regional intrinsic functional connectivity was estimated between 436 brain regions, comprising intra and inter-network connectivity of eight large-scale brain networks. Group-wise differences between PTSD and HC were investigated using network-based statistics at a family-wise error rate of p < 0.05. Significant network differences were then further investigated in 27 individuals with trauma exposure but no PTSD [TC]). RESULTS: Compared to HC, PTSD displayed lower intrinsic functional connectivity in a network of 203 connections between 420 regions within and between mid-posterior default mode, central executive, limbic, visual and somatomotor regions. Additionally, PTSD displayed higher connectivity across a network of 50 connections from thalamic and limbic to sensory and default-mode regions. Connectivity in TC in both these networks was intermediate and significantly different to PTSD and HC. CONCLUSION: A large-scale imbalance between hypoconnectivity of higher-order cortical networks and hyperconnectivity of emotional and arousal response systems seems to occur on a sliding scale from trauma exposure to clinical manifestation as PTSD. Novel interventions that target this systemic functional imbalance could provide potential mitigation of PTSD. |
---|