Cargando…

Chitosan Nanoparticles Loaded with N-Acetyl Cysteine to Mitigate Ozone and Other Possible Oxidative Stresses in Durum Wheat

Modern durum wheat cultivars are more prone to ozone stress because of their high photosynthetic efficiency and leaf gas exchanges that cause a greater pollutant uptake. This, in turn, generates an increased reactive oxygen species (ROS) production that is a challenge to control by the antioxidant s...

Descripción completa

Detalles Bibliográficos
Autores principales: Picchi, Valentina, Gobbi, Serena, Fattizzo, Matteo, Zefelippo, Mario, Faoro, Franco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065401/
https://www.ncbi.nlm.nih.gov/pubmed/33918532
http://dx.doi.org/10.3390/plants10040691
_version_ 1783682333042278400
author Picchi, Valentina
Gobbi, Serena
Fattizzo, Matteo
Zefelippo, Mario
Faoro, Franco
author_facet Picchi, Valentina
Gobbi, Serena
Fattizzo, Matteo
Zefelippo, Mario
Faoro, Franco
author_sort Picchi, Valentina
collection PubMed
description Modern durum wheat cultivars are more prone to ozone stress because of their high photosynthetic efficiency and leaf gas exchanges that cause a greater pollutant uptake. This, in turn, generates an increased reactive oxygen species (ROS) production that is a challenge to control by the antioxidant system of the plant, therefore affecting final yield, with a reduction up to 25%. With the aim of mitigating oxidative stress in wheat, we used chitosan nanoparticles (CHT-NPs) either unloaded or loaded with the antioxidant compound N-acetyl cysteine (NAC), on plants grown either in a greenhouse or in an open field. NAC-loaded NPs were prepared by adding 0.5 mg/mL NAC to the CHT solution before ionotropic gelation with tripolyphosphate (TTP). Greenhouse experiments evidenced that CHT-NPs and CHT-NPs-NAC were able to increase the level of the leaf antioxidant pool, particularly ascorbic acid (AsA) content. However, the results of field trials, while confirming the increase in the AsA level, at least in the first phenological stages, were less conclusive. The presence of NAC did not appear to significantly affect the leaf antioxidant pool, although the grain yield was slightly higher in NAC-treated parcels. Furthermore, both NAC-loaded and -unloaded CHT-NPs partially reduced the symptom severity and increased the weight of 1000 seeds, thus showing a moderate mitigation of ozone injury.
format Online
Article
Text
id pubmed-8065401
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-80654012021-04-25 Chitosan Nanoparticles Loaded with N-Acetyl Cysteine to Mitigate Ozone and Other Possible Oxidative Stresses in Durum Wheat Picchi, Valentina Gobbi, Serena Fattizzo, Matteo Zefelippo, Mario Faoro, Franco Plants (Basel) Article Modern durum wheat cultivars are more prone to ozone stress because of their high photosynthetic efficiency and leaf gas exchanges that cause a greater pollutant uptake. This, in turn, generates an increased reactive oxygen species (ROS) production that is a challenge to control by the antioxidant system of the plant, therefore affecting final yield, with a reduction up to 25%. With the aim of mitigating oxidative stress in wheat, we used chitosan nanoparticles (CHT-NPs) either unloaded or loaded with the antioxidant compound N-acetyl cysteine (NAC), on plants grown either in a greenhouse or in an open field. NAC-loaded NPs were prepared by adding 0.5 mg/mL NAC to the CHT solution before ionotropic gelation with tripolyphosphate (TTP). Greenhouse experiments evidenced that CHT-NPs and CHT-NPs-NAC were able to increase the level of the leaf antioxidant pool, particularly ascorbic acid (AsA) content. However, the results of field trials, while confirming the increase in the AsA level, at least in the first phenological stages, were less conclusive. The presence of NAC did not appear to significantly affect the leaf antioxidant pool, although the grain yield was slightly higher in NAC-treated parcels. Furthermore, both NAC-loaded and -unloaded CHT-NPs partially reduced the symptom severity and increased the weight of 1000 seeds, thus showing a moderate mitigation of ozone injury. MDPI 2021-04-02 /pmc/articles/PMC8065401/ /pubmed/33918532 http://dx.doi.org/10.3390/plants10040691 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Picchi, Valentina
Gobbi, Serena
Fattizzo, Matteo
Zefelippo, Mario
Faoro, Franco
Chitosan Nanoparticles Loaded with N-Acetyl Cysteine to Mitigate Ozone and Other Possible Oxidative Stresses in Durum Wheat
title Chitosan Nanoparticles Loaded with N-Acetyl Cysteine to Mitigate Ozone and Other Possible Oxidative Stresses in Durum Wheat
title_full Chitosan Nanoparticles Loaded with N-Acetyl Cysteine to Mitigate Ozone and Other Possible Oxidative Stresses in Durum Wheat
title_fullStr Chitosan Nanoparticles Loaded with N-Acetyl Cysteine to Mitigate Ozone and Other Possible Oxidative Stresses in Durum Wheat
title_full_unstemmed Chitosan Nanoparticles Loaded with N-Acetyl Cysteine to Mitigate Ozone and Other Possible Oxidative Stresses in Durum Wheat
title_short Chitosan Nanoparticles Loaded with N-Acetyl Cysteine to Mitigate Ozone and Other Possible Oxidative Stresses in Durum Wheat
title_sort chitosan nanoparticles loaded with n-acetyl cysteine to mitigate ozone and other possible oxidative stresses in durum wheat
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065401/
https://www.ncbi.nlm.nih.gov/pubmed/33918532
http://dx.doi.org/10.3390/plants10040691
work_keys_str_mv AT picchivalentina chitosannanoparticlesloadedwithnacetylcysteinetomitigateozoneandotherpossibleoxidativestressesindurumwheat
AT gobbiserena chitosannanoparticlesloadedwithnacetylcysteinetomitigateozoneandotherpossibleoxidativestressesindurumwheat
AT fattizzomatteo chitosannanoparticlesloadedwithnacetylcysteinetomitigateozoneandotherpossibleoxidativestressesindurumwheat
AT zefelippomario chitosannanoparticlesloadedwithnacetylcysteinetomitigateozoneandotherpossibleoxidativestressesindurumwheat
AT faorofranco chitosannanoparticlesloadedwithnacetylcysteinetomitigateozoneandotherpossibleoxidativestressesindurumwheat