Cargando…
Improved Semantic Segmentation of Tuberculosis—Consistent Findings in Chest X-rays Using Augmented Training of Modality-Specific U-Net Models with Weak Localizations
Deep learning (DL) has drawn tremendous attention for object localization and recognition in both natural and medical images. U-Net segmentation models have demonstrated superior performance compared to conventional hand-crafted feature-based methods. Medical image modality-specific DL models are be...
Autores principales: | Rajaraman, Sivaramakrishnan, Folio, Les R., Dimperio, Jane, Alderson, Philip O., Antani, Sameer K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065621/ https://www.ncbi.nlm.nih.gov/pubmed/33808240 http://dx.doi.org/10.3390/diagnostics11040616 |
Ejemplares similares
-
Chest X-ray Bone Suppression for Improving Classification of Tuberculosis-Consistent Findings
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2021) -
Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
DeBoNet: A deep bone suppression model ensemble to improve disease detection in chest radiographs
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
Weakly Labeled Data Augmentation for Deep Learning: A Study on COVID-19 Detection in Chest X-Rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2020) -
Analyzing inter-reader variability affecting deep ensemble learning for COVID-19 detection in chest radiographs
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2020)