Cargando…
Diagnostic Classification and Biomarker Identification of Alzheimer’s Disease with Random Forest Algorithm †
Random Forest (RF) is a bagging ensemble model and has many important advantages, such as robustness to noise, an effective structure for complex multimodal data and parallel computing, and also provides important features that help investigate biomarkers. Despite these benefits, RF is not used acti...
Autores principales: | Song, Minseok, Jung, Hyeyoom, Lee, Seungyong, Kim, Donghyeon, Ahn, Minkyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065661/ https://www.ncbi.nlm.nih.gov/pubmed/33918453 http://dx.doi.org/10.3390/brainsci11040453 |
Ejemplares similares
-
Development of Random Forest Algorithm Based Prediction Model of Alzheimer’s Disease Using Neurodegeneration Pattern
por: Kim, JeeYoung, et al.
Publicado: (2021) -
Random Forest Algorithm for the Classification of Neuroimaging Data in Alzheimer's Disease: A Systematic Review
por: Sarica, Alessia, et al.
Publicado: (2017) -
How random is the random forest? Random forest algorithm on the service of structural imaging biomarkers for Alzheimer's disease: from Alzheimer's disease neuroimaging initiative (ADNI) database
por: Dimitriadis, Stavros I., et al.
Publicado: (2018) -
Classification and biomarker gene selection of pyroptosis-related gene expression in psoriasis using a random forest algorithm
por: Song, Jian-Kun, et al.
Publicado: (2022) -
Causative Classification of Ischemic Stroke by the Machine Learning Algorithm Random Forests
por: Wang, Jianan, et al.
Publicado: (2022)