Cargando…
Co-Training for Visual Object Recognition Based on Self-Supervised Models Using a Cross-Entropy Regularization
Automatic recognition of visual objects using a deep learning approach has been successfully applied to multiple areas. However, deep learning techniques require a large amount of labeled data, which is usually expensive to obtain. An alternative is to use semi-supervised models, such as co-training...
Autores principales: | Díaz, Gabriel, Peralta, Billy, Caro, Luis, Nicolis, Orietta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065686/ https://www.ncbi.nlm.nih.gov/pubmed/33916017 http://dx.doi.org/10.3390/e23040423 |
Ejemplares similares
-
Outlier Vehicle Trajectory Detection Using Deep Autoencoders in Santiago, Chile
por: Peralta, Billy, et al.
Publicado: (2023) -
Mixture of Experts with Entropic Regularization for Data Classification
por: Peralta, Billy, et al.
Publicado: (2019) -
A self-supervised COVID-19 CT recognition system with multiple regularizations
por: Lu, Han, et al.
Publicado: (2022) -
Wavelet-Based Entropy Measures to Characterize Two-Dimensional Fractional Brownian Fields
por: Nicolis, Orietta, et al.
Publicado: (2020) -
Robust Semi-Supervised Traffic Sign Recognition via Self-Training and Weakly-Supervised Learning
por: Nartey, Obed Tettey, et al.
Publicado: (2020)