Cargando…
New Estimators of the Bayes Factor for Models with High-Dimensional Parameter and/or Latent Variable Spaces
Formal Bayesian comparison of two competing models, based on the posterior odds ratio, amounts to estimation of the Bayes factor, which is equal to the ratio of respective two marginal data density values. In models with a large number of parameters and/or latent variables, they are expressed by hig...
Autor principal: | Pajor, Anna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065690/ https://www.ncbi.nlm.nih.gov/pubmed/33801736 http://dx.doi.org/10.3390/e23040399 |
Ejemplares similares
-
Make the most of your samples: Bayes factor estimators for high-dimensional models of sequence evolution
por: Baele, Guy, et al.
Publicado: (2013) -
Robust Adaptive Lasso method for parameter’s estimation and variable selection in high-dimensional sparse models
por: Wahid, Abdul, et al.
Publicado: (2017) -
Bayes Factors for Evaluating Latent
Monotonicity in Polytomous Item Response Theory Models
por: Tijmstra, Jesper, et al.
Publicado: (2019) -
Optimal Bayesian estimators for latent variable cluster models
por: Rastelli, Riccardo, et al.
Publicado: (2017) -
Efficient estimation of generalized linear latent variable models
por: Niku, Jenni, et al.
Publicado: (2019)