Cargando…

Genome-Wide Analysis of Tubulin Gene Family in Cassava and Expression of Family Member FtsZ2-1 during Various Stress

Filamentous temperature-sensitive protein Z (Tubulin/FtsZ) family is a group of conserved GTP-binding (guanine nucleotide-binding) proteins, which are closely related to plant tissue development and organ formation as the major component of the cytoskeleton. According to the published genome sequenc...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Shuangbao, Cao, Peng, Wang, Congcong, Guo, Jianchun, Zang, Yuwei, Wu, Kunlin, Ran, Fangfang, Liu, Liangwang, Wang, Dayong, Min, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065747/
https://www.ncbi.nlm.nih.gov/pubmed/33807152
http://dx.doi.org/10.3390/plants10040668
Descripción
Sumario:Filamentous temperature-sensitive protein Z (Tubulin/FtsZ) family is a group of conserved GTP-binding (guanine nucleotide-binding) proteins, which are closely related to plant tissue development and organ formation as the major component of the cytoskeleton. According to the published genome sequence information of cassava (Manihot esculenta Crantz), 23 tubulin genes (MeTubulins) were identified, which were divided into four main groups based on their type and phylogenetic characteristics. The same grouping generally has the same or similar motif composition and exon–intron structure. Collinear analysis showed that fragment repetition event is the main factor in amplification of cassava tubulin superfamily gene. The expression profiles of MeTubulin genes in various tissue were analyzed, and it was found that MeTubulins were mainly expressed in leaf, petiole, and stem, while FtsZ2-1 was highly expressed in storage root. The qRT-PCR results of the FtsZ2-1 gene under hormone and abiotic stresses showed that indole-3-acetic acid (IAA) and gibberellin A3 (GA3) stresses could significantly increase the expression of the FtsZ2-1 gene, thereby revealing the potential role of FtsZ2-1 in IAA and GA3 stress-induced responses.