Cargando…
CCRRSleepNet: A Hybrid Relational Inductive Biases Network for Automatic Sleep Stage Classification on Raw Single-Channel EEG
In the inference process of existing deep learning models, it is usually necessary to process the input data level-wise, and impose a corresponding relational inductive bias on each level. This kind of relational inductive bias determines the theoretical performance upper limit of the deep learning...
Autores principales: | Neng, Wenpeng, Lu, Jun, Xu, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065855/ https://www.ncbi.nlm.nih.gov/pubmed/33918506 http://dx.doi.org/10.3390/brainsci11040456 |
Ejemplares similares
-
Automatic sleep staging by a hybrid model based on deep 1D-ResNet-SE and LSTM with single-channel raw EEG signals
por: Li, Weiming, et al.
Publicado: (2023) -
REM Sleep Stage Identification with Raw Single-Channel EEG
por: Toban, Gabriel, et al.
Publicado: (2023) -
CAttSleepNet: Automatic End-to-End Sleep Staging Using Attention-Based Deep Neural Networks on Single-Channel EEG
por: Li, Tingting, et al.
Publicado: (2022) -
Automatic sleep stage classification based on subcutaneous EEG in patients with epilepsy
por: Gangstad, Sirin W., et al.
Publicado: (2019) -
SeriesSleepNet: an EEG time series model with partial data augmentation for automatic sleep stage scoring
por: Lee, Minji, et al.
Publicado: (2023)